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Study atmospheric rivers (ARsS) using airborne radio
occultation (ARO)
Analyze two methods that calculate bending angle of

the raypath from excess phase: Geometric Optics
(GO) and Phase Matching (PM)

Use a test case to compare GO and PM

Long term: develop algorithm to determine which
regions of the AR would benefit from PM

NCEP GFS IVT(kg m~' s7'; shaded), IVT Vectors, and SLP(hPa; contours)
Forecast Valid at: 0000 UTC 12/02/2023(f000) Mission: FFO1 —
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Disclaimer: predicted results, locations are accurate, profile extension might be slightly different in final products.
Contact: J. Haase/B. Cao, in partnership with the UC San Diego/SIO/CW3E

The test case, FFO1, was recorded on Dec. 1, 2023.

Methods of Deriving
Bending Angle

Geometric Optics

* Relationship between excess Doppler and the
geometry of the raypath

« Solve for bending angle and impact parameter

* Only one value of excess Doppler for each time
point

* Only one bending angle and one impact parameter
at each time point

« Cannot be used when there is
atmospheric multipath

« Algorithm requires heavy smoothing of the phase
because it matches the signal at 1 point
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Phase Matching

* Replica signals are generated based on variety of
potential Impact parameters

* Replicas are compared to incoming signal

» Closest match is found via method of stationary
phase

« Can handle multipathing because multiple impact
parameters will return valid results

 Algorithm requires less filtering because it matches
the signal to ~ 1 period
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Investigation of Filtering and Artifacts
Bending Angle Profile Examples from GO and PM
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Bending angle profiles from GO (black), PM positive elevation angle (blue), and PM negative elevation angle (red). GO is
unfiltered and PM is filtered using a 4 second moving average. PM successfully retrieves monotonically varying impact
parameter. Profiles show evidence of variation seen for increasing moisture in the profiles (Xie et al., 2018) and increasing
penetration in well-mixed moisture profile (Murphy and Haase, 2022). Further investigation of the potential effect of the
synoptic environment on the profile characteristics Is ongoing.

Problematic Bending Angle Profiles
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There are several types of artifacts present in many of the Likely causes of artifacts:
profiles generated from prototype code. They are currently « Edge effects from finite time series
under investigation. Removing the moving average filter from * Cycle slips
PM will likely affect these artifacts. * Mis-match in sampling/ interpolation issues

Conclusions

 |nitial results comparing phase matching retrievals and simulated excess phase observations were consistent in bending
angle with standard deviation of 16% above 7 km.

* The phase matching method shows great promise in providing a superior profiles from unfiltered excess phase
observations.

* Further advantages are expected from postprocessed GNSS recordings using open loop tracking, which is able to
continue recording in adverse multipathing conditions.

» A detailed investigation of the artifacts shows where the signal processing can potentially be improved.
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Statistical Comparison of PM

and ERAS5 simulations

Simulated bending angle

« Background: ECMWF ERADS reanalysis,
137 levels

* Model: ROPP forward model is 2D, uses
tangent point drifting

The model simulates the bending angle by

using the background meteorological data

to project the raypath as it progresses

through the atmosphere.

PM Error
Bending Angle Error vs Impact Height
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Preliminary comparison of PM retrievals with
forward modeled bending angle. Deviations
from model simulations are less than 16%
above 7 km. As measurements approach the
surface, increasingly few penetrate the
atmosphere. This leads to the large standard
deviation and potential bias around 6 km.

Next Steps

The next step Is to ameliorate the artifacts as
much as possible. This may include designing
a filter specifically for PM. Future recordings
will also be higher frequency, decreasing the
need to interpolate excess phase before
calculations.
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of different regions in
other parameters. Sharp
to penetrate using

benefit from PM, here we use a test case
to compare the two methods.

NCEP GFS IVT(kg m~' s7'; shaded), IVT Vectors, and SLP(hPa; contours)
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Disclaimer: predicted results, locations are accurate, profile extension might be slightly different in final products.
Contact: J. Haase/B. Cao, in partnership with the UC San Diego/SIO/CW3E

The test case, FF01, was recorded on Dec. 1, 2023. It made
landfall Jan. 17, 2024 over Northern California and Oregon,
and was rated a weak AR.

Methods

Geometric Optics

Excess Doppler can be calculated from excess phase. This
can be substituted into an equation that relates the excess
Doppler to parameters of the geometry of the raypath,
Including refractive bending angle.

We can then use these relationships to solve for bending
angle and impact parameter. Under GO, there is only one
value of excess Doppler for each time point, and there Is

only one bending angle and one impact parameter at each

time point. Thus, GO

cannot be used when there iIs

atmospheric multipath. Also, the GO algorithm requires
heavy upstream smoothing of the phase, resulting in

additional error.

R Tangent point

Phase Matching

The receiver measures the incoming signal. Different possible
replica signals are generated from a variety of impact
parameters. These are compared against the incoming signal,
and the closest match is selected. In the case of multipath,
multiple impact parameters will return valid results, so we can
still derive refractivity and other variables from this data. The
phase matching algorithm requires far less filtering than
geometric optics, further decreasing error.

True Raypath
a;>a
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g <a
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Comparing Geometric Optics and Phase Matching Methodologies

Bending Angle Profile Examples

PM vs. GO; g05r_09-1

PM vs. GO; g07s_13-1

— 6394
: _raw )
6378 - - PM_pos| [ : Sﬁ:&ﬁ
3 PM_neg 6392 - T TR S T LY bl 2 PM_neg |
6376 -
E ’é ."‘."s
= 6374 3 ¥
o .
g 6388
S 6372 -
o S 6386
5 - -
a 6370 3
E € 6384
6368 - -
: A ] é
9900 6380 - r -3
1 1 | 1 1 ’{
-0.2 0 0.2 0.4 0.6 0.8 1 0.2 0 0.2 0.4 0.6 0.8 1
Alpha (deg.} Alpha (deg.)

PM vs. GO; g11r_13-1

- GO_raw
6358 1 IR "ol *‘&*‘»‘:" - PM_pos| [
Ry 10 o - PM_neg
' 2 it %
6356 -
< 6354 iy |
o : ’
© .; ey
- | e
LU 6352 .- "‘_K,-'..‘:-"-. o
m .- . =
Q 6350 -3 ,.
E ] |
6348 - 5 .
< ' ¥
6346 - e
-0.2 0 0.2 0.4 0.6 0.8 1
Alpha (deg.)

Increasing variability in individual GO observations -

- Increasing penetration depth->
* PM successfully retrieves monotonically varying impact parameter.
* Profiles show evidence of variation seen for increasing moisture in the profiles (Xie et al., 2018) and increasing penetration in well-mixed

moisture profile (Murphy and Haase, 2022)
* Further investigation of the potential effect of the synoptic environment on the profile characteristics Is ongoing.

Problematic Bending Angle Profiles
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Many types of artifacts are present in some profiles when using the prototype code, most likely linked to edge
effects from the finite time series, cycle slips or mis-match in sampling. These are currently under investigation.

Conclusions

Initial results comparing phase matching and geometric optics retrievals on filtered excess phase
observations showed the methods were consistent in bending angle with standard deviation of 16%.
The phase matching method shows great promise in providing a superior profiles from unfiltered excess

phase observations.

Improvements are evident in the observations from the conventional geodetic receivers. Even further
advantages are expected from postprocessed GNSS recordings using open loop tracking.
A detailed investigation of the artifacts shows where the signal processing can potentially be improved.
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filtered with 5 second span SavitzKy-
Goloy filter and bending angle
smoothed with 31 point moving avera
(30 sec). Phase matching retrievals
used excess phase filtered with 5
second span Savitzky-Goloy filterjan
moving average filter of XX seconds.
(Incude the one example from the fer
flight here)

Preliminary comparison of PM retriev:
with forward modeled bending angle
from ROPP operator (also the figure
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Bending angle and impact parameter can be calculated
from the Excess Doppler equation
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