Collaborative observations of the ionosphere by
GNSS-R and GNSS-RO on space weather
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The Global Navigation Satellite System (GNSS) provides an economic way ol v . N ek S "«
to monitor the ionosphere changes on a global scale. However, the ground- o I o0 == e e o .
based GNSS stations are limited to observation coverage above oceanic, polar, | ” 7
and low-population areas. Satellite observations are becoming popular for the § 0 §
rapid revisit that can easily develop global coverage. In this study, the GNSS L 5
Reflectometry (GNSS-R) of CYGNSS as well as the GNSS Radio Occultation
(GNSS-RO) data of FORMOSAT-7/COSMIC-2 (F7/C2) are used to analyze the o S =" = R ————
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ionospheric irregularities and Equatorial plasma bubbles (EPBS). z | g
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From May 10 to 13, 2024, a G5 solar storm occurred during Solar Cycle 25. Figure 2.1 Figure 2.2 ) oo
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events, and a strong geomagnetic storm component. It was the most powerful 2L I " .
geomagnetic storm to affect Earth since 2003, producing auroras at unusually - | X X
low latitudes in both the Northern and Southern Hemispheres. = Z
This study aims to investigate whether variations associated with this solar ? B
storm can be observed using data from three different sources: GNSS ground-
based stations, COSMIC-2/FORMOSAT-7 (GNSS-RO data), and e e e e
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Materials and Methods

This study utilized data from CYGNSS (GNSS-R) and COSMIC-
2[FORMOSAT-7 (GNSS-RO) to investigate ionospheric
disturbances, particularly focusing on the impact of solar activity
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" L from 2022 to 2024. By analyzing L1-band SNR data from CYGNSS
* CYGNSS (GNSS-R) g and radio occultation data from COSMIC-2, the research calculated
Using DDM (Delay Doppler Map) and SNR (Signal-to-Noise Ratio) data from _ - - e the global S4 index, which measures ionospheric scintillation.
CYGNSS (Level 1 Science Data Version 3.3), variations in SNR over the : : 2 e i «2022: During the solar minimum, S4 disturbances were rare and
ocean from May 9 to May 13, 2024. - T e localized.
« COSMIC-2/FORMOSAT-7 (GNSS-RO) «2023: As solar activity increased, the probabillity of S4 disturbances
C2/F7 scnLv2 data from TACC (Taiwan Analysis Center for COSMIC) were T s T & rose, with more widespread effects.
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Formula for S4 Probability Calculation: —
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