

IROWG-10 / September 12-18, 2024 / UCAR Eun-Hee Kim, Hyoung Wook Chun, and Seungbum Kim ehkim2010@korea.kr

- and consequential error reduction in long-term predictions.

- (especially the Ocean, South and North Pole).

Name of EXP.	New GNSS-RO	Description(Inflation factor, Error
Baseline	Х	2.2, 20%
CTL		2.2, 20%
EXP_zfrac	Ο	2.2, 40%
EXP_obserr		3.1, 20% (Consideration of doubling the
$RMSE_{EXPS} = \sqrt{\frac{1}{2}}$	$\frac{EXPs - IFS)^2}{N}$ In	mprovement Rate = $\frac{RMSE_{Baseline} - RM}{RMSE_{Baseline}}$

This study was funded by the Numerical Modeling Center of the Korea Meteorological Administration Research and Development of Numerical Weather Prediction and Data Application Techniques under Grant KMA2018-00721.

• The degraded performance of the mid-layers geopotential height in the CTL is the weakest in the EXP_obserr. • The EXP_zfrac with twice fraction of the error applied only to less than 10km altitude is similar in high layer compared to CTL, but

Increasing the observation error across all layers leads to a decrease in upper layer temperature performance compared to the CTL,

	0	24		.obe	96	120	₀	No 24	rth He 48	emisph 72	пеге 96	120	_e	24	Tro 48	opics	96	120	0	Sout 24	hHemi 48 ∣	spher 72	e 96 120			_e	24	Globe	2 96	120	_e		n Hemisph 48 72		₀	24	Тгор 48		5 120	а I в	Sou1	th Hemi 48		e 96 120
1	9.59	0.18	0.13	0.08	-0.06	0.08	0.16	0.03	0.18	-0.17	-0.28	3 -0.19	1.02	2 0.30	0.10	9 0.29	0.08	0.24	0.13	0.16	9.20 0	.09 0	.22 0.3	5	Q 700hPa											\wedge								
\dagger	1.36	0.95	0.32	0.33	-0.01	0.44	1.23	0.86	0.10	0.04	-0.03	8 0.67	0.2	2 0.09	0.11	1 0.31	-0.10	-0.03	2.72	1.88	9.69 6	.67 0	.10 0.4	Θ	WS 250hPa																			
┦	9.61	0.88	0.69	0.45	0.11	0.08	-0.27	0.33	0.30	0.22	0.00	0.03	0.10	0 0.29	0.22	2 0.20	0.46	0.58	1.56	1.51	1.04 0	.64 0	.12 -0.0	02	WS 500hPa							\land												
t	9.28	0.66	0.53	0.61	0.09	0.22	-0.08	0.31	0.05	-0.10	-0.52	2 0.13	0.34	4 0.63	0.33	3 0.27	0.06	-0.18	0.56	0.97	0.94 1	15 0	.43 0.3	8	WS 850hPa							\land												
╎	0.95	0.70	1.20	1.34	0.39	0.07	4.76	0.04	-0.17	0.18	-0.14	4 0.41	8.3	1 1.45	-1.2	4 -1.26	6 -0.33	0.56	12.52	0.87	2.43 2	. 16 0	.76 -0.3	LO	GPH 250hPa														_					
╁	4.01	-0.80	0.70	1.11	0.27	-0.73	-3.29	-2.6	5 -1.59	-0.30	0.02	-0.11	-1.6	50 -6.24	1 -6.2	8 -5.78	3 -3.72	-2.53	-5.20	1.49	2.44 2	.00 0	.52 -0.9	22	GPH 500hPa	-						-				-	-							
┦	2.42				0.27							7 -0.33	-			4 0.66							.55 -1.2	-	GPH 850hPa			^																
╀				1.05				<u> </u>				-0.05			-	1 2.82							.30 -0.3	-	T 250hPa								<u>^</u>											
┦							-									_								-																				
╞							<u> </u>						<u> </u>					-0.86					.95 0.8		T 500hPa																			
	9.65	0.66	0.49	0.42	0.60	0.09	1.20	0.95	0.51	0.22	0.15	0.05	0.0	-0.1	-0.2	6 -0.45	-0.10	-0.09	0.85	1.13	1.00 1	01 1	.16 0.1	/	T 850hPa				$\Delta \mid \Delta$	4			\bigtriangleup					\vee						Δ
	e ∣	24		lobe 72	96	120	₀	No 24	rth He			120		24		opics	96	120	e	Sout 24	h Hem: 48	• •	re 96 12¢			_B	24	Globe	2 96	120	.		Hemisph 48 72		.	24	Тгор 48		5 17/	0 B		th Hemi 48		e 96 120
t													-0.6					8 0.00					9.15 -0.		Q 700hPa	∇		- /					- /-								∇			
t	1.52	0.75	0.12	-0.03	3 -0.16	6 0.06	1.49	0.76	0.20	0.02	-0.22	2 0.57	0.4	7 0.06	-0.1	.7 0.02	-0.13	0.28	2.68	1.40	0.23 -	0.05 -0	9.09 -0.3	37	WS 250hPa							\wedge			\wedge									
ł	0.28	0.37	0.11	0.10	9 -0.31	1 -0.17	-0.12	0.30	0.12	-0.08	3 -0.08	8 0.17	-0.6	69 -0.5	4 -0.7	0 -0.2	2 -0.28	0.28	1.27	0.92	0.41 0	.28 -(9.40 -0.	41	WS 500hPa	\wedge										\bigtriangledown								
ł	0.22	0.44	0.08	0.16	5 -0.23	3 -0.03	8 -0.01	0.30	-0.15	-0.09	9 -0.01	1 -0.00	0.0.0	0.35	0.00	6 -0.0	7 -0.25	-0.20	0.59	0.61	0.23 0).38 -(9.35 0.0	1	WS 850hPa											·	•							
ł	3.34	1.60	0.52	0.18	3 -0.41	1 -0.54	5.02	0.93	-0.11	0.33	8 -0.09	9 1.00	8.0	6 2.61	-0.6	52 -1.14	4 -0.70	0 -0.14	-1.97	1.67	1.05 0).53 -(9.56 -1.	29	GPH 250hPa													∇			\wedge			
┨						-					0.21	0.74	1.3	4 -1.7	8 -2.9	2 -3.10	5 -2.33	3 -2.21	3.05	2.48	1.52 @).77 -(9.58 -1.	51	GPH 500hPa																			
┦			-		7 -0.16							-		2 2.01		3 0.01							9.33 -1.	-	GPH 850hPa								▼											
ł					2 0.26			_						6 3.94		_		1.19					9.16 -0.	-	T 250hPa								A											
ł																								-																				
╞	1.09				6 -0.48					-0.94			-	_		_							9.21 -0.	-	T 500hPa			A																
	0.35	0.64	0.32	0.20	0.07	-0.31	0.86	1.02	0.71	0.33	-0.33	3 0.09	-0.1	12 0.01	0.3	2 -0.3	9 -0.36	6 -0.43	0.42	0.89			.52 -0.		T 850hPa 	\square		Δ														Δ		
İ	e	24		lobe 72	96	120	e	No 24	orth Ho 48	emispł 72	here 96	120	₀	24	Tr 48	opics	96	120	0		:h Herr∷ 48 ∣					e	24	Globe 48 7			₀		1 Hemisph 48 72	ere 96 120	в	24	Тгор 48			1	Sou1	th Hemi 48	ispher	e 96 120
t	1.06	0.72	0.76	0.53	3 0.28	0.43	0.89	0.74	0.84	0.35	0.02	0.43	1.1	.5 0.69	0.7	1 0.63	0.33	0.30	1.21	0.61	0.78	9.71 0	.85 0.8	-	Q 700hPa					\triangle											\triangle	\triangle	Δ	\land
t	1.74	0.98	0.70	0.86	5 0.75	0.62	1.22	0.68	0.21	0.22	0.18	0.54	0.6	8 -0.0	5 -0.0	07 0.41	0.17	-0.13	3.38	2.34	1.77	1.72 1	48 0.8	37	WS 250hPa							\triangle												\wedge
t	1.53	1.14	0.74	0.89	9 0.59	0.58	0.86	0.83	0.23	0.29	-0.01	1 0.03	0.8	81 0.41	0.0	1 0.28	0.10	0.07	2.50	1.73	1.25	1.34 0	.96 0.9	00	WS 500hPa											\wedge								
$\left \right $	0.42	0.68	0.62	2 1.02	2 0.54	0.66	0.24	0.51	0.04	0.25	0.13	8 0.22	0.2	25 0.14	0.24	4 0.39	0.08	-0.01	0.73	1.21	1.21	1.73 0	.92 1.0	6	WS 850hPa						\wedge				\wedge			\wedge						\wedge
┨	2.27	2.30	1.87	1.56	5 0.50	1.19	0.60	1.43	0.38	0.23	-0.20	0 1.16	-1.2	21 -0.1	0 0.5	8 0.30	0.14	0.39	6.62	3.84	2.97	2.40 0	.93 1.2	8	GPH 250hPa																			
┨					9 0.76		-					0.99				_							.92 1.6	_	GPH 500hPa										V									
┦				_	9 1.07		-	-	0.60		0.49	-	-	4 1.69		6 0.59								_	GPH 850hPa				7								\wedge							
┦								-			+		-	_		-								_	T 250hPa												\square							
┦								-	_			0.51	-	_	-								25 0.9	_														_						
	2.29	1.46	1.16	0.96	5 0.48	0.95	0.61	0.86	0.35	0.03	-0.03	3 0.60	0.7	2 0.97	0.9	1 0.57	0.24	-0.24	5.14	2.31	1.78	1.61 0	.83 1.3	2	T 500hPa													\square						
	0.73	0.61	0.47	0.64	4 0.50	0.48	1.11	1.08	0.79	0.67	0.52	0.47	0.6	0.09	-0.2	20 -0.2	1 -0.10	0.08	0.64	0.71	0.74	1.09 0	.75 0.5	9	T 850hPa								$\blacktriangle \triangle$		$ \Delta $									
						-12																																						

< **Z-Score** compared to Baseline using IFS analysis field > Northern Hemisphere 500hPa 5-day forecast GPH improvement rate(%): (CTL) -0.11, (EXP_zfrac) 0.74, (EXP_obserr) 0.99

Conducted an impact assessment on the adjustment of GNSS-RO observation errors • Observation error adjustment reduces the rate of temperature prediction improvement, decreases the negative effect of GPH • Improved model prediction performance increasing observation error better entire layers, than only in the lower (below 10km) Three new GNSS-RO + inflation factor(3.1) represented Real-time operation in the KIM(v3.9) (Start date: 14 May, 2024)

Degraded nbrove Degraded

Korea Meteorological Administration