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« Global Navigation Satellite System (GNSS) Radio Occultation (RO) provides sounding measurements of the atmosphere with e E E N o E N | 7
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numerical weather prediction through data assimilation is to accurately estimate RO observation errors, especially in the lower S . o E
troposphere. It is well known that the lower tropospheric water vapor irregularities introduce large uncertainties in retrieved 0 horat e e _ : i i i i | | i

bending angle profiles. In addition, the moisture variation in the lower troposphere and strong vertical density gradient on the ' s | | | -50 B8 SR U S S T e e T e )

sharp top of the atmospheric boundary layer can result in a considerable bending angle uncertainty owing to multiple paths. == | - VT e Lyl Peta Poinl ot BAdIference (98 () BASTO (08 (%) DetaPonieot BRATEence o n)  BRR 08
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When multipath occurs, the wave-optics converted RO bending angle spectrum contains multiple spectral components, ikl el il - ST P e :
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Increasing the overall width of the spectrum or the local spectral width (LSW). Longitude(*) Longitude(®) -For all three missions, BA differences are negative for all ranges of DBAOE and their magnitudes

« This study characterized the uncertainty of GNSS RO BA profiles from COSMIC-2, Spire, and PlanetiQ in the lower troposphere PlanetiQ with Impact Height at 4 km E increase rapidly with increasing DBAOE in 0-2 km height layer.
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* The National Oceanic and Atmospheric Administration (NOAA) STAR Full Spectrum Inversion (FSI) package is used to derive S RO * The distribution of DBAOE for three missions are similar: “For COSMIyC-é and PlanetiQ, when DBAOE is greater than 10%, the differences increase
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and calculate the relative dynamic bending angle observation error (DBAOE) for each mission. 50 s 05 et \~L970) _ P quickly.

« The overall DBAOE results over land and ocean between three missions are reported and their trends also are evaluated. Y and nprth SUbthP'C_ oceans, indicating that RO in those regions *But for Spire, BA bias decreases when DBAQE greater than 25%.

 The spatial distribution of the DBAOE is calculated over 5° longitude x 5° latitude grids at selected altitudes to identify the rg G had high uncertainties. _ *In thgozr"é‘ggl\l/ﬁ’ér-z and PlanetiO, BA bias is independent of DEAOE
regions of maximum and minimum DBAE globally and trace them to the regional climatological mean states. 2 OfETs * A majority of the low DBAOEs occurred over the continents “For Spire, BA bias increases slightly with DBROE
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« The DBAOEs according to different signal noise ratios (SNR) are compared to examine the impacts of SNR on DBAOE. S Her SR IR Sha v i G T R Sl e and SOU_th subtroplc-oceans, whgre moisture was rela}tl\{ely low, BA STD is positively correlated with DBAOE

» The DBAOEsS according to different latitude regions are compared to examine the impacts of spatial distribution on DBAOE. R R L A e e T Rl suggesting that RO in those regions had low uncertainties.

« The DBAOEs according to bending angle bias are evaluated to examine the impacts of DBAOE on BA bias in terms of e e R SR A R For Spire and PlanetiQ, 455 to 90S and 45N to 90N regions are Discussion: the sampling rate impact on DBAOE
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background. _ e PICEELY ( ) « One possible reason for the DBAOE difference between RO missions is the different sampling rates.

« Reason for the smaller DBAOE of Spire are also evaluated. _ _ _ _ _ T

o 0  To compare the observation noise from these two instruments consistently, here the integration time
Longitude(®) Latitude dependency IS accounted for, as longer integration times result in less noise. The noise reduction follows the
] RFSI (9/1/2022 to 09/30/2022) RFSI (9/1/2022 to 09/30/2022) square root rule: doubling the integration time reduces noise by a factor of sqrt(2).
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The raw bending angle profile is derived at high vertical resolution using the Full Spectrum Inversion (FSI) method: = ° = ° = : 10 10 COSMIC-2 100 Hz ]
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2 study, the DBAOE at different SNR was ¢ ‘| The phenomenon of higher SNR has lower DBAOE occurs for all three mission with or without
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0 o b o 15 20 ocean Increase rapidly with increasing DBAOE in 0-2 km height layer.

+ In the land region, on the other hand, Spire shows consistent DBAOE relative to COSMIC-2 « The three mission SNRs have similar pattern, and the higher SNR concentrated in tropical region. «  One possible reason for the lower DBAOE of Spire is the lower sampling rate of Spire.
and PlanetiQ * The phenomenon of higher SNR has lower DBAOE occurs for all three mission with or without latitude limitation. One possible reason for

this feature is that below 5 km, the effect of non-spherically symmetric irregularities dramatically increases due to the larger water vapor

« On the other hand, relative to land, ocean areas have greater DBAOE due to their greater _ S ) : =
horizontal gradient in the atmosphere, and then the larger SNR could more easily detect these irregularities.

moisture content.
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