Test of CWA's Experimental Profile-Dependent Radio Occultation Observation Error Model Using the ROMEX Data

*Zih-Mao Huang*¹, *Guo-Yuan Lien*¹, *Ching-Chieh Lin*²

Introduction

- The observation-profile-dependent nature of the observation quality control (QC) and/or observation error specification.
- Local Spectral Width (LSW) is a measure of the RO bending ang the use of the LSW information to improve the QC or to constru
 - Liu et al. (2018): Use LSW for QC. (discarding data with large
 - Zhang et al. (2023), Sjoberg et al. (2023), Li et al. (2024), and error model. All of these studies share an similar concept bu different ways. ~ "continuous" (or "nonlinear") QC

Observation error model with LSW

 Assume the RO bending angle observation error variance is con static" term.

The latter is not profile-dependent, but can be a function of he

$$\sigma^2 = \sigma_{\rm dyn}^2 + \sigma_{\rm other}^2 \qquad (1)$$

• Take long-term average of (1) for each height and latitude bin: [Let () be average for each height and latitude bin]

$$\sigma_{\text{static}}^{2} \equiv \overline{\sigma^{2}} = \overline{\sigma_{\text{dyn}}^{2}} + \sigma_{\text{other}}^{2} \qquad (2)$$
• (1) - (2) $\rightarrow \sigma^{2} - \sigma_{\text{static}}^{2} = \sigma_{\text{dyn}}^{2} - \overline{\sigma_{\text{dyn}}^{2}} \qquad (3)$

$$\rightarrow \sigma^{2} = \sigma_{\text{static}}^{2} + \sigma_{\text{dyn}}^{2} - \overline{\sigma_{\text{dyn}}^{2}} \qquad (3)$$

$$\text{Let } \sigma_{\text{dyn, clim}} \equiv \sqrt{\overline{\sigma_{\text{dyn}}^{2}}} :$$

$$\rightarrow \sigma = \sqrt{\sigma_{\text{static}}^{2} + \sigma_{\text{dyn}}^{2} - \sigma_{\text{dyn, clim}}^{2}} \qquad (4)$$

Static vs. Profile-dependent bending angle observation errors

Black: The average of the profiledependent observation error

¹ Central Weather Administration, Taiwan ² Taiwan Analysis Center for COSMIC, Central Weather Administration, Taiwan

errors of the RO data has posed challenges to their	Mod Perio
gle data uncertainty. Several studies have pursued ruct observation error models.	Exp
e LSW values)	
nd <u>this study</u> : Use LSW to formulate an observation It formulate the observation error models in	
	STA
nposed of a "dynamic" term and the other "quasi-	LSV
nposed of a laynamic term and the other gaasi	* The
ight and latitude (or other parameters):	

• $\sigma_{ m static}$: Static observation error by traditional
	methods (e.g., Desroziers et al. 2005)
	(for each height and latitude bin)
• $\sigma_{ m dyn}$: Dynamic observation error
	$\sim f(LSW) = LSW / 3$
	(Zhang et al. 2023)
• $\sigma_{ m dyn,clim}$: Long-term (climatological) mean of
	the dynamic observation error
	(for each height and latitude bin)

Main properties:

 $=\sqrt{\sigma_{\rm dyn}^2}$

- The long-term average of the profiledependent observation error variance always converges to traditional (statistically determined) static observation error variance.
- [If the upper-level LSW values are zero, then] Upper-level RO data use exactly the static observation errors (i.e., not profile-dependent).
- The observation errors of lower-level RO data are largely determined by their LSW values.
- * Before defining the error model, the LSW values were artificially reduced to zero linearly from 9 to 12 km and set to zero above 12 km.

400 -500 -

released.

Li et al., 8th ROM SAF Workshop June 11-13, 2024, https://ecmwfevents.com/assets/presentations/romsafli1718187954.pdf Liu et al., 2018, J. Atmos. Oceanic Technol., 35, 2117-2131, https://doi.org/10.1175/JTECH-D-17-0224.1. Sjoberg et al., 2023, J. Atmos. Oceanic Technol., 40, 1461– 1474, https://doi.org/10.1175/JTECH-D-23-0029.1. Zhang et al., 2023, Mon. Wea. Rev., 151, 589–601, https://doi.org/10.1175/MWR-D-22-0122.1.

LSW_RIXQC vs. STAT Impact of profile-dependent RO observation errors (QC relaxed only in the LSW experiment) **Temperature RMSE difference (K)** Scorecard –

-0.024-0.018-0.012-0.006 0 0.006 0.012 0.018 0.024 0.

Forecast hou

Conclusion and future work

• We propose a new approach to formulate a bending angle observation error model, which considers both the traditional (statistically determined) static observation errors and the LSW-determined dynamic

- observation errors.
- We test this new profile-dependent RO observation error model in CWA TGFS global NWP system:
 - > When QC is unchanged, it improves slightly some forecast skills.
 - When it is combined with a relaxation of the GSIdefault QC, a larger positive impact is found.
- This approach provides a general procedure to develop profile-dependent RO observation error models upon any statistically determined RO observation error

• In the current study, we apply this profile-dependent RO observation error model only to FORMOSAT-7/COSMIC-2 RO data. We will apply this observation error model to ALL ROMEX data once the UCARprocessed ROMEX data (with LSW values included) are

References