Quantifying the Impact of Ionospheric Bending on GNSS-RO Absolute TEC Retrieval During Solar Cycle 25

University of Colorado **Boulder**

Jaehee Chang¹, Andrew K. Sun¹, Jihyeok Park¹, Jade Morton², Jiyun Lee¹ ¹Korea Advanced Institute of Science and Technology

²University of Colorado Boulder

Contact Information: Jaehee Chang chang.cathy7@kaist.ac.kr

This work marks a new attempt in assessing the residual bending error in absolute TEC using real RO measurements, in contrast to prior research efforts that relied primarily on simulation studies.

(COSMIC-2) RO data, accounting for ionospheric bending effects on both phase and

Residual bending error was estimated directly from measurements without a priori

KAIST

pseudorange observables.

- Residual bending errors were shown to be substantial under high solar activity conditions, with the largest error in our dataset exceeding 30 TECU.
- The results indicated a significant dependency of the residual bending error on vertical TEC gradient and local time.
- Under conditions inducing high TEC gradients, residual bending error correction must be implemented in order to satisfy the accuracy requirement (3 TECU) for absolute TEC.
- information on the electron density.
- Analysis across Solar Cycle 25 showed a dependency of the residual bending error on solar activity and local time, and confirmed that higher vertical TEC gradients result in larger errors, with extreme cases exceeding 20-30 TECU.

Theory

The residual due to ionospheric ray path bending in phase/pseudorange observables consists of two terms: excess path length (Δs) and excess TEC (ΔTEC) .

Conclusion

This work is supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT under Grant 2022M1A3C2069728, Future Space Education Center.

Acknowledgments

References

The estimation of residual bending error, using the approach outlined above, requires ionospheric excess phase processing as it applies to neutral atmospheric sensing (Schreiner et al., 2009).

- $*\langle \rangle_w$ is the average over an arc with weighting factor w
- Then, the residual bending error in *absolute* TEC consists of (Høeg et al., 1998): ① Residual bending error in relative TEC, from phase dispersion ② Leveling error, from phase and pseudorange dispersion

- Høeg, P., G. B. Larsen, H.-H. Benzon, J. Grove-Rasmussen, S. Syndergaard, M. D. Mortensen, J. Christensen, and K. Schultz, GPS atmosphere profiling methods and error assessments, Scientific Report 98-7, Danish Meteorological Institute, Copenhagen, Denmark, 1998
- Schreiner, W., Rocken, C., Sokolovskiy, S., and Hunt, D., Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing, GPS Solut., 14, 13–22, 2009
- Syndergaard, S., On the ionosphere calibration in GPS radio occultation measurements. Radio Science, 35(3), 2000
- Syndergaard, S., A new algorithm for retrieving GPS radio occultation total electron content, Geophys. Res. Lett., 29(16), 2002.
- \triangleright LEO clock bias $-$ Single-differencing with simultaneously tracked reference and occulting GNSS satellite observations
- ➢ GNSS clock bias ‒ High-rate (5-sec sampling interval) GNSS clock estimates from Center for Orbit Determination in Europe (CODE)

 Γ $P_i = s_0 +$ \mathcal{C}_{0}^{0} $\frac{1}{f_i^2} TEC_0 +$ 3 2 \mathcal{C}^2 f_i^4

Γ

Abstract Results Dual-frequency Total Electron Content (TEC) estimation assumes straight-line propagation, resulting in a residual bending error due to ionospheric refraction/dispersion effects. In this study, residual bending errors in absolute TEC were assessed using Constellation Observing System for Meteorology, Ionosphere, and Climate-2 ▪ COSMIC-2 RO measurements collected over 37 days between 2020-2024, covering periods of both low and high solar activity, were used to assess the residual bending error in dual-frequency TEC. **Example – High Solar Activity (2200 LT)**

-
- Residual bending error extends up to 22.8 TECU, at maximum vertical TEC gradient (6.61 TECU/km) just below
- Leveling error due to dispersion is 2.88 TECU, but may vary depending on the arc length and weighting
- Bending error in relative TEC generally dominates the total bending

$$
\widehat{TEC}_{12} = \frac{f_1^2 f_2^2}{C(f_1^2 - f_2^2)} (\hat{L}_1 - \hat{L}_2 - \hat{B}_L) \quad \text{where } \hat{B}_L = \left(\hat{L}_1 - \hat{L}_2 + \hat{P}_1 - \hat{P}_2\right)_w
$$

- **■** Utilizing the frequency dependence (f^{-4}) of bending terms in phase path observables, we can estimate Γ and subsequently the residual bending error terms by taking a linear combination of dual-frequency excess phase measurements (Syndergaard, 2002).
- Large bending errors occur more frequently during periods of increased solar activity, as indicated by a higher F10.7 solar flux index.

「ime (Hour)

- ⇒ \cdot Under the spherical symmetry assumption, $\Gamma = D$ $dTEC_0$ da 2 $+ a$ \overline{d} da $\overline{ }$ 0 $N_e^2 ds$
- **•** Real phase measurement \hat{L}_i contains an integer ambiguity which induces a bias B_L in the phase (*relative*) TEC. This can be removed by phase-to-pseudorange leveling:

Large errors are concentrated around 1700-2200 LT, which may be related to the sharp spatial gradient of electron density at the evening terminator due to pre-reversal enhancement (PRE).

- ⇒*Residual bending term in pseudorange is larger than in phase measurements*
- **•** Using series expansions, residual bending terms in phase (L_i) and pseudorange (P_i) can be approximated as below (for details see Syndergaard (2000)):

$$
\Gamma = \frac{2f_1^2f_2^2}{c^2} \left[\frac{f_1^2(L_1 - s_0) - f_2^2(L_2 - s_0)}{f_1^2 - f_2^2} \right]
$$

Data Processing

** Multipath effects, differential code bias, and random errors are not considered*

$$
\hat{L}_{r,i}^{S} = \rho_{r}^{S} + \delta \rho_{r,rel}^{S} + c \delta t_{rel}^{S} + c \delta t^{S} + (c \delta t_{r} + c \delta t_{r,rel}) - I_{r,i}^{S}
$$
\nGeometric range

\nRelativistic
effects

\n

Real phase measurement:

Statistical Study

* Bending error in relative TEC only