PLANETIQ Level-2 RO Data Processing System

Jonathan Brandmeyer, E. Robert Kursinski, Cameron Dotts, Xuelei Feng

10th IROWG Workshop, 2024-09-13

Boulder, CO, USA

● Performance Highlights

Life of a single profile

- Data Preparation
- Geometric Optics Processing
- Wave Optics Processing with Sliding-Window Phase Matching
- Application of Wave Optics to Polarimetric-RO

PLANETIQ Geometric Optics: Performance Highlights

(GNOMES-GDAS)/RMS(GNOMES, GDAS)

- Tighter bias and \sim ¹/₂ stddev in upper stratosphere
	- PlanetiQ using slightly *finer* vertical resolution > 40km
	- Using broadcast orbits & clocks for Tx
	- Using onboard nav solution for Rx
	- Without any climatological model at all
- Slightly higher BA variation in WO region due to finer vertical resolution
	- PiQ: 100m > 8km; 50m < 8km
	- UCAR: 500m 250m 100m
- Small mean bias < 8 km under investigation

PLANETIQ Geometric Optics: Performance Highlights

(GNOMES-GDAS)/RMS(GNOMES, GDAS)

- Non-Gaussian statistics show similar picture
- Tighter median and $\sim \frac{1}{2}$ noise in upper stratosphere
- Trading places in WO region for 95th percentile
- 25th percentile and 95th percentile very similar < 10 km

PLANETIQ Geometric Optics: Initial Conditions

- 1&Q Complex, 125 Hz Pilot Chn
- I&Q Complex 250 Hz Nav-modulated subchannel where applicable
- Time-matched carrier phase model for each
- Represent signal as unevaluated sum of phase-continuous reference frame and complex wave field in that frame
- Peak SNR $~1600$ V/V (each) in this case

PLANETIQ Geometric Optics: SNR Optimization

- Zoom on previous to highlight nav modulation & timestamp relationships
- Timestamps & carrier phase model correspond to leading edge of each correlation interval
- Trivializes pilot+data combination in receiver's reference frame

PLANETIQ Geometric Optics: SNR Optimization

- Zoom on previous to highlight nav modulation & timestamp relationships
- Timestamps & carrier phase model correspond to leading edge of each correlation interval
- Trivializes pilot+data combination in receiver's reference frame
- Boost's signal strength by sqrt(2) / $~1\%$

PLANETIQ Geometric Optics: SNR Optimization

- Zoom on previous to highlight nav modulation & timestamp relationships
- Timestamps & carrier phase model correspond to leading edge of each correlation interval
- Trivializes pilot+data combination in receiver's reference frame
- Boost's signal strength by up to sqrt(2) / 41%
	- ~2300 V/V-sqrt(Hz) in this case!

PLANETIQ Geometric Optics: Phase Estimation

- Rx model is good but not perfect
	- \circ <<< 1 turn of error from $+150$ km to $+15$ km

PLANETIQ Geometric Optics: Phase Estimation

- Rx model is good but not perfect
	- <<< 1 turn of error from +150km to +15 km
- Example: un-modeled disturbance near tropopause

PLANETIQ Geometric Optics: Phase Estimation

- Answer: Closed-Loop Tracking!
- Type-II PLL implemented with Rauch-Tung-Striebel algorithm
- **Extended Kalman Filter forward** pass, followed by a fix-up "smoothing" filter reverse-time pass
- Carries information backwards across fade periods

PLANETIG Geometric Optics: Phase Estimation

- Answer: Type-II PLL implemented with Rouch-Tung-Striebel algorithm
- **Extended Kalman Filter forward** pass, followed by a fix-up "smoothing" filter reverse-time pass
- Carries information bidirectionally across fade periods
- Implemented by adding to both carrier phase model and complex residue
	- -> Still unevaluated sum of ref frame + complex residual

Geometric Optics: Fundamental Equations

Similar to ROPP's choices, except in treatment of doppler and time

Exactly correct when solving within a common coordinate time (GPS system time) and inertial coordinate system (ECIF at occultation's epoch)

$$
d = \mathbf{v}_{Tx}^T \mathbf{u}_{Tx} - \mathbf{v}_{Rx}^T \mathbf{u}_{Rx}
$$

\n
$$
1 = \mathbf{u}_{Tx}^T \mathbf{u}_{Tx}
$$

\n
$$
1 = \mathbf{u}_{Rx}^T \mathbf{u}_{Rx}
$$

\n
$$
0 = \mathbf{r}_{Rx} \times \mathbf{u}_{Rx} - \mathbf{r}_{Tx} \times \mathbf{u}_{Tx}
$$

\n
$$
\phi_{Rx} = \measuredangle(\mathbf{u}_{Rx}, \mathbf{r}_{Rx})
$$

\n
$$
\phi_{Tx} = \measuredangle(\mathbf{u}_{Tx}, \mathbf{r}_{Tx})
$$

\n
$$
\alpha = \phi_{Rx} + \phi_{Tx} + \theta - \pi
$$

\n
$$
a = \|\mathbf{r}_{Tx}\| \sin \phi_{Tx} = \|\mathbf{r}_{Rx}\| \sin \phi_{Rx}
$$

PLANETIQ Geometric Optics: Ionosphere Correction

Other researchers:

- $L3 = L1 + k*filter(L1 - L2)$

Reasonable choice… when L2 is noisy

Time domain view shows for high-SNR L2 signals (like GNOMES!) ionosphere-free phase strictly better than either L1 or L2 even for much finer resolution than Fresnel scale

Recall: limiting resolution ~first fresnel zone $(\sim 1.3 \text{ km})$

-> no filtering required

MDEV of excess phase versus descent rate .2024.253.17.34.E29.setting

PLANETIQ Geometric Optics: Ionosphere Correction

Result: Extremely clear profiles, even well above 60km

stdy 60 80 metric is evaluated with respect to an exponential fit

2e-7 radians!

For us, entire GO exercise exists primarily to provide an extrapolation for wave optics processing

Extrapolation method similar to 2016 Z. Zeng @ UCAR

PLANETIQ Geometric Optics: Ionosphere Extrapolation

PLANETIO Wave Optics: Fundamental Equations

Similar to Sievert's Sliding-Window Phase **Matching**

Differences:

- Use full phase-matching chirp signal model Φ_{PM} instead of BA-local approximation
- Maintain signal model u as phase-continuous reference frame $\Phi_{\rm R}$ and complex wave field ũ in that frame
- Use PM chirp-like model to transform wave field instead of the geometric-optics global excess phase estimate

Low-pass filter the transformed complex wave field to identify bending at each impact height

$$
\begin{split} u(t)&=\exp\left(i\phi_R(t)\right)\tilde{u}(t)\\ \alpha(t,a_x)&=\theta(t)+\sin^{-1}\left(\frac{a_x}{r_{Rx}(t)}\right)+\sin^{-1}\left(\frac{a_x}{r_{Tx}(t)}\right)\\ \phi_{PM}(t,a_x)&=k\left(\sqrt{\left\|\mathbf{r}_{Rx}\right\|^2-a_x^2} \right. \left. +\sqrt{\left\|\mathbf{r}_{Tx}\right\|^2-a_x^2} \right. \left. +\alpha(t,a_x)a_x\right)\\ u_{PM}(t)&=\exp\left(i(\phi_R(t)-\phi_{PM}(t,a_x))\right)\tilde{u}(t)\\ u,\tilde{u},u_{PM}\in\mathbb{C} \end{split}
$$

PLANETIG Wave Optics: Atmospheric Multipath

Clear Picture

IROWG-10, 2024-09-13, Boulder, CO

Insensitive to choice of receiver's reference frame

Researchers have previously reported inability to reliably recover sharp BA(IH) due to open-loop model tracking errors.

SWPM: can recover sharp BA(IH) transients without dependency on phase model.

Contours show frequency shift W.R.T. receiver's model

- Insensitive to choice of receiver's reference frame
- Contours show frequency shift W.R.T. Geometric Optics RTS PLL model
- -> Exact same result

- Insensitive to choice of receiver's reference frame
- Contours show frequency shift W.R.T. a smoothed and 15 Hz perturbed model
- -> Exact same result

Insensitive to cycle slips

Never makes noise-dependent connected-phase decisions -> Never has "cycle slips"

-> Usable for ducting height estimation, where applicable

Sometimes, not trivial to associate ducting signals with specific BA(IH) step

Insensitive to cycle slips

-> Usable for ducting height estimation, where applicable

Other times, quite clear

Insensitive to track depth truncation

Researchers have previously reported positive BA biases due to noise entering WO from deeper SLTA regions

Due to use of local windows: Get exact same BA retrieval independent of truncation

 -> Can process extremely deep profiles without worrying about introducing BA biases

PLANETIQ SWPM: Reflection Signal Processing

Reflection signals are routinely collected as side-effect of RO signal tracking

Researchers have proposed methods to learn about atmospheric refraction using reflections

Some reflection signals wrap around Nyquist aliasing frequencies

PLANETIQ SWPM: Reflection Signal Processing

Lifting anti-aliasing safeguards may allow processing more of these ancillary reflection signals in BA(IH) space

Natural outcome from using complex transformed wave field and local analysis instead of globally-connected phase

Data format includes Time(BA, IH) in addition to geometry as an aide to 2D BAFO users

Shown: 5-second contours

Epoch chosen to be 0 km SLTA intercept. Provides multidimensional origin:

- 0 time
- 0 km SLTA
- 0 bending (ie, atmo-free)
- 0 impact height

Can use geometry info and Geometric Optics to calculate ray's tangent point

Shown: tangent point displacement in along-ray axis

- Positive: From Tx towards Rx
- More bending -> displaces bending towards lower-altitude member (Rx)
- Contours: 25 km/ea

Can use geometry info and Geometric Optics to calculate ray's tangent point

Shown: tangent point displacement in cross-ray horizontal axis

- Positive: to ray's left along surface
- More displacement -> more sliding motion along surface
- Contours: 25 km/ea

PLANETIO SWPM: Polarimetric RO Processing

GNOMES-5 equipped with one P-RO antenna

- Launched 2024-08-16
- Sci. operations < 1 day later
- **Tracking all four worldwide GNSS**
- Tracking dual-frequency for each (6x GNSS bands total)

H-V phase shift determination easy: "Just" angle(conjugate(u_{PMV})*u_{PM H})

Never need to fix-up "cycle slips" since we don't count cycles, just measure wave fields (calibration challenges remain unaffected…)

-> P-RO phase shifts in BA(IH) domain

PLANETIO SWPM: Polarimetric RO Processing

GNOMES-5 Can See Rain! Maybe!

Calibration / Validation still ongoing.

Currently: Hard-zero delta-Phi @ 35 km SLTA

Shown: 4-sigma mask on amplitude of complex difference, colorized by phase of complex conjugate product

pigLv2 GN05.2024.234.11.01.C20.rising.B1CP-B2AP.nc4 SWPM Delta-Phi sada: 0.0

PLANETIG SWPM: Polarimetric RO Processing

More Rain! Maybe!

piqLv2 GN05.2024.234.12.43.E09.rising.E1C-E5BQ.nc4 SWPM Delta-Phi sada: 0.0 $\Delta\Phi$ (mm)
 \Box 20.0 12000 -17.5 10000 -15.0 mpact Height (m) 8000 -12.5 6000 -10.0 -7.5 4000 -5.0 2000 -2.5 0.0 n 0.04 0.01 0.02 0.03 0.00 0.01 0.02 0.03 0.04 0.00 Bending angle (rad) Bending angle (rad)

Calibration / Validation still ongoing

Freezing line?

Calibration / Validation still ongoing

Cross-pol sensitivity varies with frequency band and azimuth

pigLv2 GN05.2024.234.03.41.C32.rising.B1CP-B2AP.nc4 SWPM Delta-Phi sada: 0.0

Summary and Conclusions

High performance available in the upper stratosphere

- Without ground-based POD, or high-rate clocks, or IGS orbits (on GAL, GPS, BDS anyway…)
- Without any climatological model conditioning at all!
	- 100% observation all the way to the top!

New processing technique derived from SWPM

- Eliminates sensitivity of sharp BA(IH) retrievals to receiver modeling
- Eliminates BA bias sensitivity to truncation
- Supports ducting height estimation
- Extends reach for analyzing ancillary reflection signal collections
- Supports P-RO processing in IH domain

See also E. "Rob" Kursinski's talk on lower troposphere for more results

Backup: Vertical Correlation of BA Err

'tropical'], ['GAL', 'BDS'] -1.00 BA Vertical Correlations (pigLv2 - gdaPrf)/mean(gdaPrf) 60 -0.75 50 -0.50 -0.25 40 lmpact Height (km)
ဗ္ဘ 0.00 -0.25 20 -0.50 10 -0.75 $0\frac{1}{0}$ -1.00 10 $\overline{20}$ 30 40 50 60 Impact Height (km)

Bending Angle: 2024.001-2024.010, ['GN02', 'GN04'], ['rising', 'setting'], ['north', 'south',

(PiQ - GDAS) / GDAS

PLANETIQ

Backup: Vertical Correlation of BA Err

(PiQ - GDAS) / GDAS

PLANETIQ

Method shamelessly cribbed from UK-MET, except, using the full-width half-maximum metric instead of stddev of Gaussian fit

Current filtering configuration:

- 1.25*Fresnel in GO
- 100m 8km 25km
- 50m < 8 km

- Transition from GO to WO at 20 km (10km overlap for comparison)

PLANETIQ Backup: Vertical Correlation of BA Err

Bending Angle: 2023.365-2024.010, ['GN02', 'GN04'], ['rising', 'setting'], ['north', 'south', 'tropical'] ['GPS', 'GLO', 'GAL', 'BDS']

(UCAR - GDAS) / GDAS

For comparison only

PLANETIQ Backup: GO versus WO

Cross-check between geometric optics and wave optics methods in overlap region between 15km and 25km

L1 zoomed to demonstrate (much) better than 0.1% concurrence in bias

L3(GO) based on iono-free BA weighted diff

L3(WO) based on SNR-weighted sum of iono-corrected WO(L1) and WO(L2)

Method independence serves as strong self-validation in bias: If there is a bias versus background, it is caused by features common to both GO and WO processing methods (bias in background, Fermat's effect, etc)

Demanty anyle companionity in versus ou

PLANETIQ Favorite References

This system may have been built "from scratch", but it would not have been possible without learning from numerous prior publications and disclosures. Here follows a subset of the works we found most useful in its development.

1997 Kursinski: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System

1999 Ashby: NIST Technical Note 1385 GPS Receivers and Relativity

2002 Hajj: A technical description of atmospheric sounding by GPS occultation

2004 Jensen: Geometrical optics phase matching of radio occultation signals

2004 Martin: Complex Signal Processing is Not Complex

2008 Riley: Handbook of Frequency Stability Analysis

2010 Sokolovskiy: On the uncertainty of radio occultation inversions in the lower troposphere

2016 Zeng: Ionospheric correction of GPS radio occultation data in the troposphere

2018 Aparicio: Information content in reflected signals during GPS Radio Occultation observations

2020 Sokolovskiy: (UCAR Technical Note) Standard RO Inversions in the Neutral Atmosphere (Processing Steps and Explanation of Data)

2021 Sievert: Using A Sliding Window Phase Matching Method for Imaging of GNSS Radio Occultation Signals

2021 ROM-SAF: ROPP-11 Preprocessor Module User's Guide