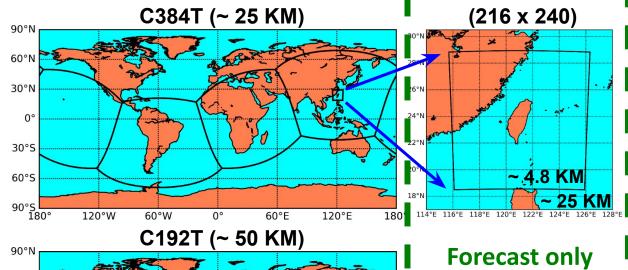
ROMEX results at the Central Weather Administration of Taiwan

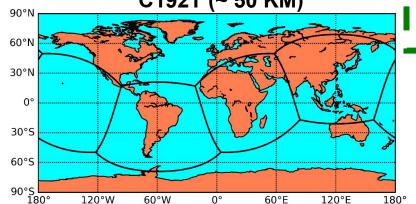
Guo-Yuan Lien¹, Zih-Mao Huang¹, Ching-Chieh Lin², Wen-Hsin Teng¹

¹ Central Weather Administration (CWA), Taiwan
² Taiwan Analysis Center for COSMIC, Central Weather Administration, Taiwan

Special thanks to the ROMEX steering committee

16 September 2024 COSMIC / JCSDA Workshop and IROWG-10 Meeting @ Boulder


Global NWP system used in ROMEX: TGFS


S

- CWA Taiwan Global Forecast System (TGFS) v1.1
 - Adapted from NCEP GFS/GSI v15.1, with several local modifications
 - Finite-Volume Cubed-Sphere (FV3) Dynamical Core
 - 25-km (C384T) resolution (cf. NCEP GFS: 13 km)
 - Hybrid 4DEnVar data assimilation

hybrid 4DEnVar using time-lagged ensemble (global domains)

Ensemble system
EnKF
(32 members)

Experimental design – RO data used

Mission	TGFS operation (for reference)	NoRO	CTL	ROMEX		
GRAS	V		V	V		
COSMIC-2	V		V	V		
KOMPSAT-5	V		V	V		
PAZ	V		V	V		
TerraSAR-X	V		V	V		
TanDEM-X	V		V	V		
Sentinel-6			V	V		
Spire				V		
PlanetiQ				V		
GeoOptics				V		
Fengyun3				V		
Yunyao				V		
Tianmu				V		
Total # (profiles /day)			~ 8,700	> 30,000		

Experimental design – Experiment list

C	
J	

Experiment	RO QC in the assimilation	Radiance VarBC coefficient update	Data processing	Days already run		
NoRO	_	Online	_	28		
CTL	All default (*1)	Online	EUMETSAT	91		
ROMEX_t1	All default (*1)	Online	EUMETSAT	26		
ROMEX	Stricter QC for ROMEX additional data (*2)	Online	EUMETSAT	91		

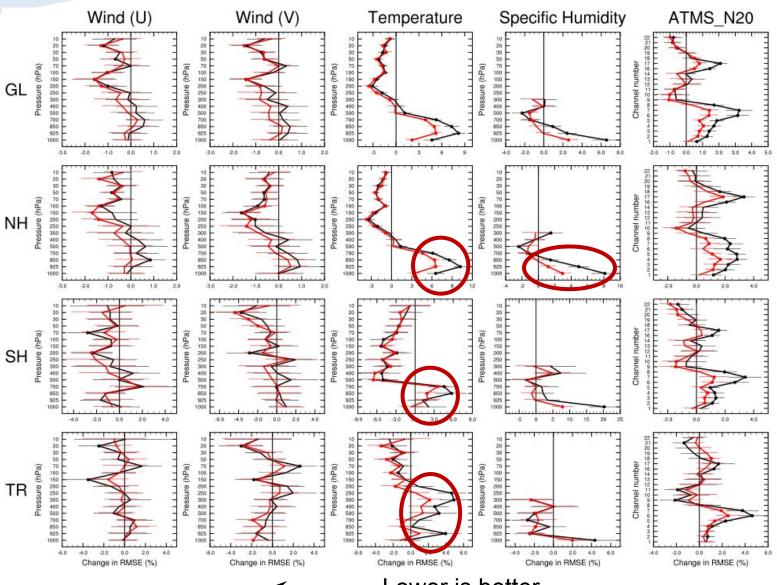
Notes:

- (*1) For all RO data, use the same QC as TGFS' next operational version ("default").
- (*2) For ROMEX additional data (Spire, PlanetiQ, GeoOptics, Fengyun3, Yunyao, Tianmu), use a stricter QC (stricter gross error check; do not use data above 30 km) than "default."

CTL vs. ROMEX (91 days)

Green/Red: ROMEX is better/worse than CTL

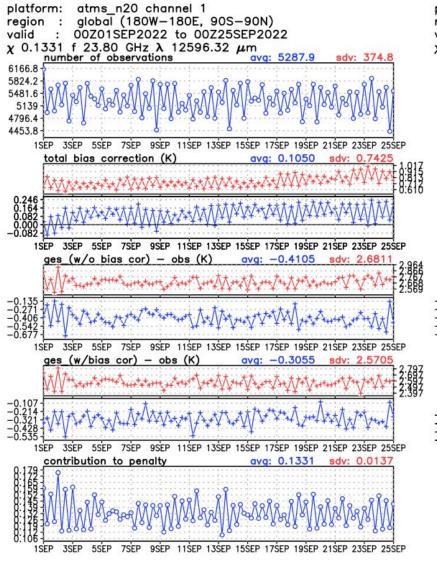
Verified against **ERA5**

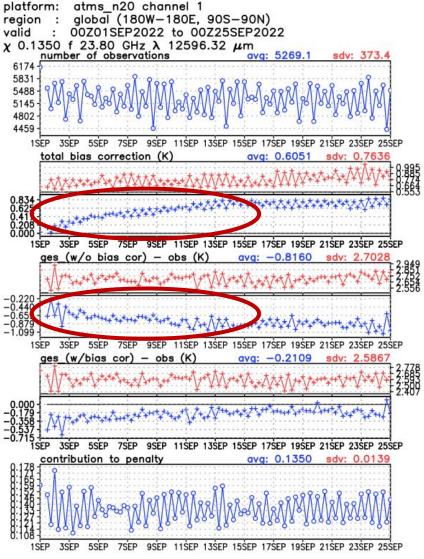

Verified against self analysis

- Significantly degraded height biases especially at mid-to-high levels, which also causes significantly degraded RMSE.
- Limited improvements found in temperature RMSE above 500 hPa and wind RMSE above 200 hPa (against ERA5).
- Also degraded anomaly correlation.

CTL vs. ROMEX_t1 vs. ROMEX (26 days)

Background (6-h forecast) fit to observation:
Radiosonde (U, V, T, Q) & ATMS radiances


Reference (zero lines): CTL


Black: ROMEX_t1

Red: ROMEX

- Significantly degraded low- to mid-level temperature and low-level humidity globally.
 - Consistent with the model-based verification.
- With a stricter QC for ROMEX additional RO data (ROMEX), the degradation in temperature and humidity is already mitigated (compared to ROMEX_t1), but not completely solved.

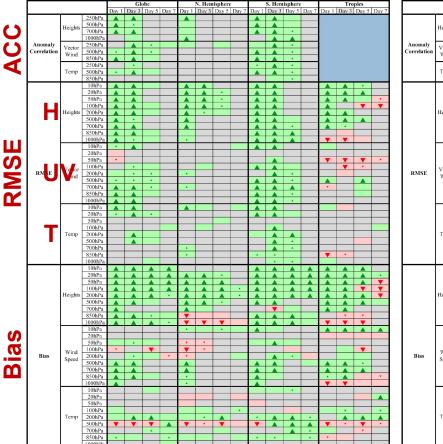
CTL vs. ROMEX - Satellite VarBC

 The satellite VarBC coefficients and thus their total corrections drift from their normal values (as in CTL) rapidly in the ROMEX experiment.

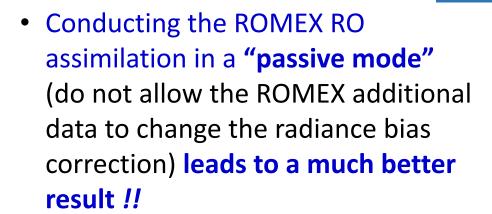
Experimental design – Experiment list

Experiment	RO QC in the assimilation	Radiance VarBC coefficient update	Data processing	Days already run
NoRO	_	Online	_	28
CTL	All default (*1)	Online	EUMETSAT	91
ROMEX_t1	All default (*1)	Online	EUMETSAT	26
ROMEX	Stricter QC for ROMEX additional data (*2)	Online	EUMETSAT	91
ROMEX_passive	Stricter QC for ROMEX additional data (*2)	Offline (passive) based on CTL (*3)	EUMETSAT	61 (ongoing)

Notes:


- (*1) For all RO data, use the same QC as TGFS' next operational version ("default").
- (*2) For ROMEX additional data (Spire, PlanetiQ, GeoOptics, Fengyun3, Yunyao, Tianmu), use a stricter QC (stricter gross error check; do not use data above 30 km) than "default."
- (*3) In satellite radiance assimilation, use the VarBC coefficients from "CTL" experiment, which means not allowing the ROMEX additional data to update the radiance VarBC coefficients.

ROMEX vs. ROMEX_passive (61 days)


Green/Red: ROMEX_passive is better/worse than ROMEX

Verified against **ERA5**

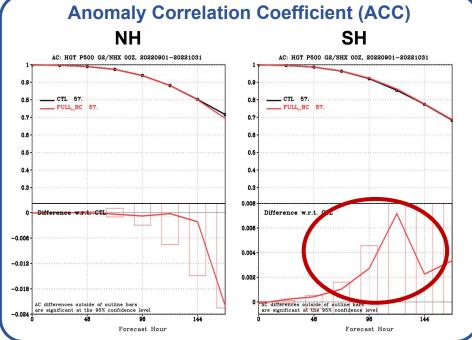
Verified against self analysis

			Globe				N. Hemisphere			S. Hemisphere			Tropics					
			Day 1	Day 3	Day 5	Day 7	Day 1	Day 3	Day 5	Day 7	Day 1	Day 3	Day 5	Day 7	Day 1	Day 3	Day 5	Day
		250hPa	•	A							•	A						
	Heights	500hPa	_								A	_						
	Treights	700hPa	_	_							_	_						
		1000hPa	_										_					
Anomaly	Vector	250hPa	-	_								-						
Correlation	Wind	500hPa 850hPa	-									-						
	_	250hPa	_										_					
	Temp	500hPa									_	A						
		850hPa										1						
		10hPa																
		20hPa																
		50hPa														*	_	
		100hPa										_			*			•
	Heights	200hPa	_	A							A	_						
		500hPa	_								A	_					_	
		700hPa	A								A	-	_		*			
		850hPa 1000hPa	.									A			· •	•		
	\vdash	1000hPa 10hPa	-	_			_				-	-				,		
	l	20hPa																
		50hPa	_							_								
		100hPa										A						
RMSE	Vector Wind	200hPa																
		500hPa	_								<u> </u>						A	
		700hPa	A	A							A						A	
		850hPa	4	A							A	_						
		1000hPa	A	A							A	A						
	T	10hPa																
		20hPa		A													A	
		50hPa			-	-						-						
		100hPa 200hPa										<u> </u>			•	*	•	
	Temp	500hPa					_					-						
		700hPa	-	_	-							-	-					
		850hPa																
		1000hPa																
		10hPa		•								_						
		20hPa		A	A							A	A	A				
		50hPa													_	_	_	
		100hPa					*	•	*	*	*				•			•
	Heights	200hPa		*				▼			*							
		500hPa	_	A			A	_	A		A	_	A		A	_	A	
		700hPa		-				_				-	-					7
		850hPa	_	A			_			_	_	_			*	_	_	
	-	1000hPa 10hPa	_							-	-				_			
		20hPa																
		50hPa																
	L	100hPa		_	_													
Bias	Wind	200hPa		À	Ť							A		×				
	Speed	500hPa													_	▼		
		700hPa									4					*		
		850hPa																
		1000hPa																
		10hPa																
		20hPa																-
		50hPa												A				
		100hPa											V				_	
	Temp	200hPa															▼	7
		500hPa 700hPa																
		850hPa																
	1	1000hPa		_			_					-						_

 This suggests that, for some reason, the current VarBC configuration may NOT work well with the large amount of the RO data.

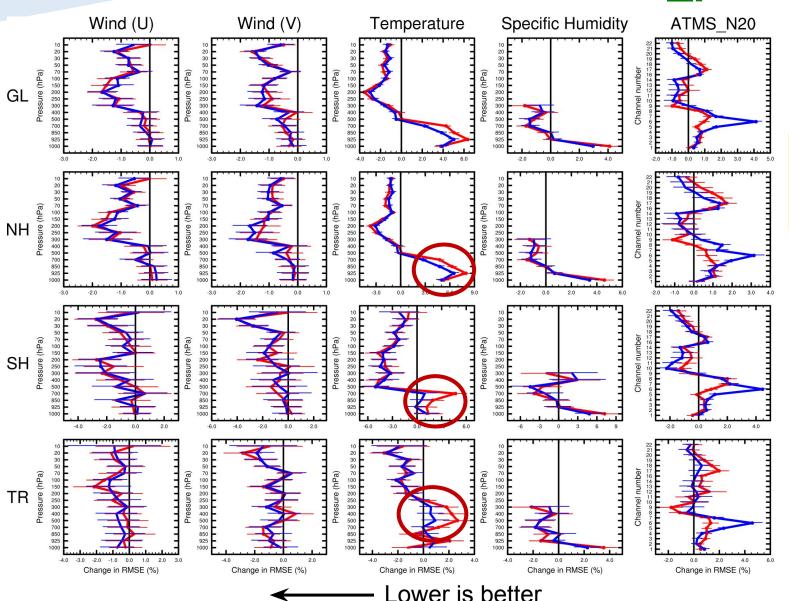
⁽¹ Sep – 31 Oct 2022)

CTL vs. ROMEX_passive (61 days)



Green/Red: ROMEX_passive is better/worse than CTL

Verified against **ERA5**


Verified against self analysis

- Compared with CTL, ROMEX_passive show improvements in temperature and winds, and also anomaly correlation in SH.
 - However, there are still significant degradations in height biases.

CTL vs. ROMEX vs. ROMEX_passive (61 days)

Background (6-h forecast) fit to observation:
Radiosonde (U, V, T, Q) & ATMS radiances

Reference (zero lines): CTL

Red: ROMEX

Blue: ROMEX_passive

- ROMEX_passive is qualitatively similar to ROMEX, but it mitigates some degradations in ROMEX over CTL (e.g., low-level temperature).
- Degradations in NH temperature below 700 hPa is still notable even in ROMEX_passive.

Ensemble Forecast Sensitivity to Observation Impact (EFSOI) In ROMEX experiment (ROMEX t1)

00 UTC 5 Sep - 12 UTC 27 Sep 2022

Total EFSOI

Per-Obs EFSOI (= Total EFSOI / # obs)

Average Per-obs. EFSOI

Moist total energy norm

All

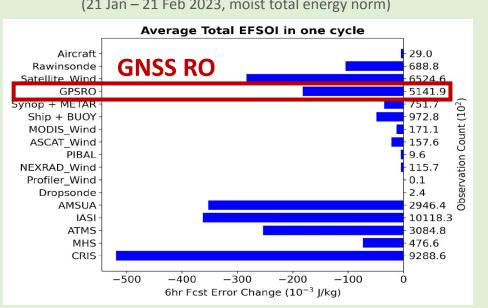
observations

Aircraft

GPSRO

Rawinsonde

Satellite Wind

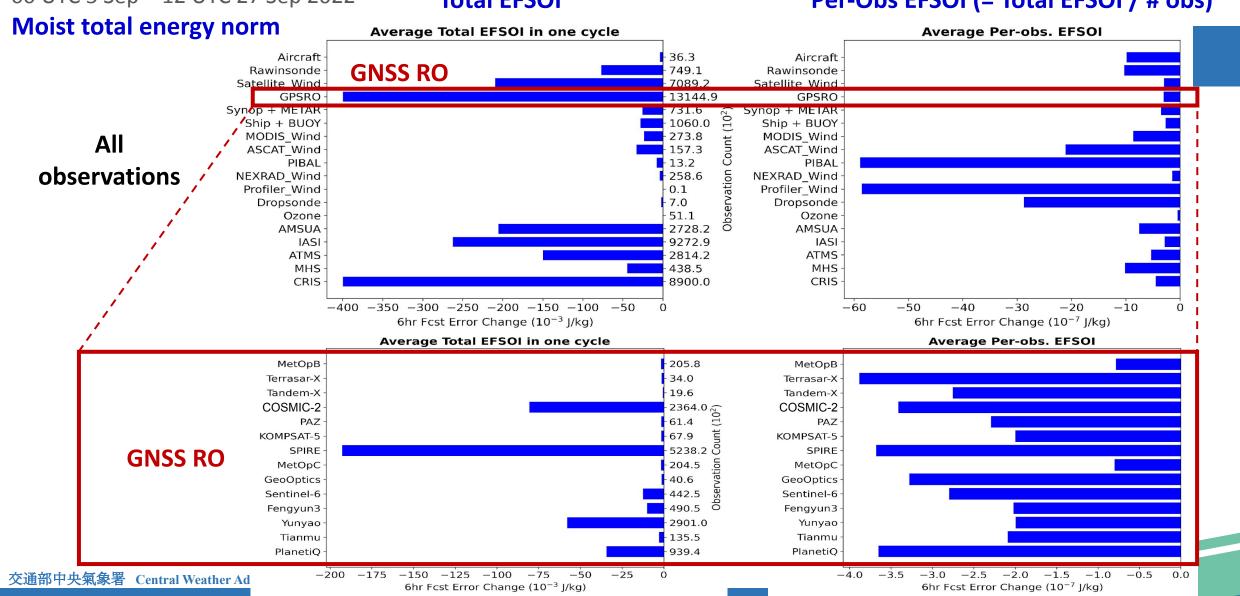

Ship + BUOY

MODIS Wind

ASCAT Wind

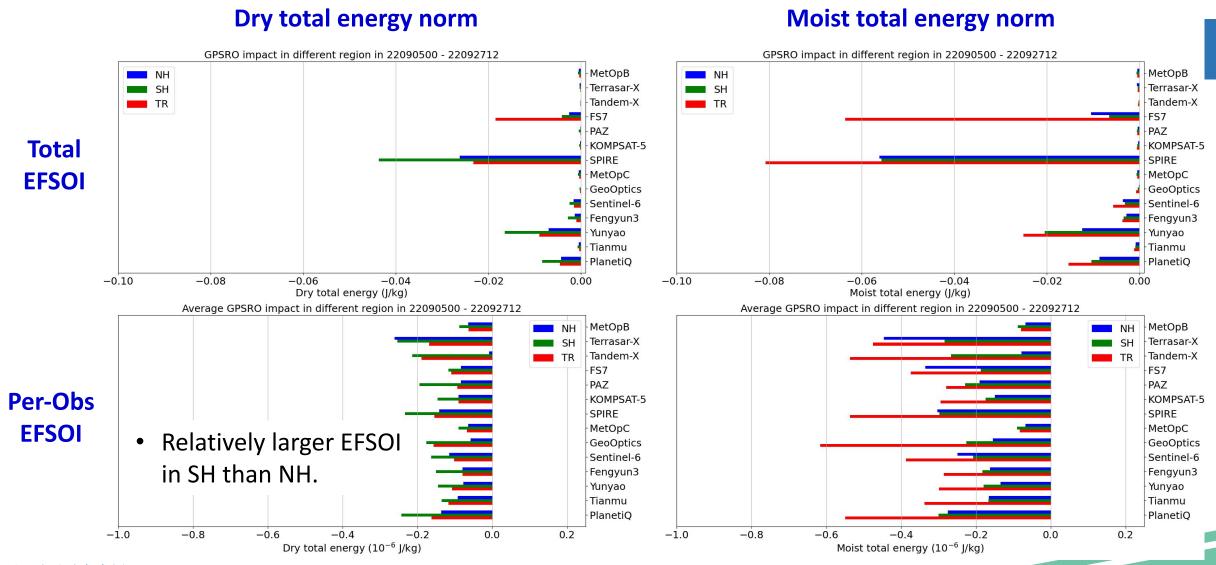
Synop + METAR

(21 Jan – 21 Feb 2023, moist total energy norm)


Ensemble Forecast Sensitivity to Observation Impact (EFSOI) In ROMEX experiment (ROMEX t1)

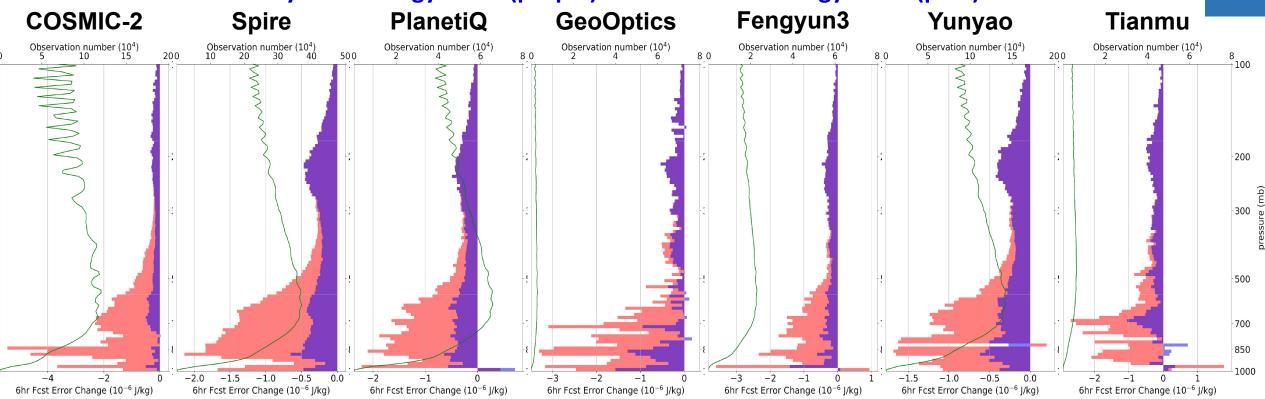
00 UTC 5 Sep - 12 UTC 27 Sep 2022

Total EFSOI


Per-Obs EFSOI (= Total EFSOI / # obs)

EFSOI wrt. Geographic regions (NH, SH, TR)

Co


00 UTC 5 Sep – 12 UTC 27 Sep 2022

EFSOI wrt. Height (pressure level)

00 UTC 5 Sep – 12 UTC 27 Sep 2022

- Although ROMEX is significantly worse than CTL in the model and observation verifications,
 the EFSOI still estimate all positive impacts in all RO satellites and in all regions & almost all height levels.
 - Conjecture: The EFSOI may not be good at detecting the "indirect impact" via satellite radiance VarBC. (??)

Concluding remarks

- CWA has completed some of the required experiments and verification in ROMEX.
- The current results show more degradations than improvements:
 - Significantly degraded height biases especially at mid-to-high levels.
 - Limited improvements in temperature RMSE above 500 hPa and wind RMSE above 200 hPa.
- With a ROMEX assimilation experiment in a "passive mode" (do not allow the ROMEX additional data to change the radiance bias correction), a much better result is obtained, although there are still some mixed results compared to CTL.
 - It implies that the current satellite radiance VarBC configuration may not work well with the large amount of the RO data in ROMEX, so the "indirect effect" of RO data assimilation via satellite radiance VarBC degrades the results.
 - \Box This sheds some light for improving the results, but further investigation is needed.
 - We also think that this indirect effect may not explain all sources of the degradation.
 More investigation on the RO data quality may also be needed.