National Environmental Satellite, Data, and Information Service

AND ATMOSA

NOAA

TRATION

Sept. 13, 2024

NOAA/NESDIS Commercial Data Program (CDP) and Radio Occultation (RO)

Overview of the Commercial Strategy and Summary of the Phase 1 RO Analysis of Alternative (AoA)

Office of Systems Architecture and Engineering Products Mapping and Piloting Branch Natalie Laudier, Branch Chief

NESDIS Approach to Radio Occultation (RO)

- NOAA/NESDIS goal for Radio Occultation is a Hybrid Architecture
 - o Commercial Data
 - o International Partnership
 - Investigating a NOAA-owned constellation and what it would look like
- NOAA/NESDIS Commercial Data Program currently purchases commercial RO data
 - New "Guidance for NOAA Commercial Data Buys" (Draft)- Provides a framework for NOAA Programs and Offices conducting Commercial Data Buys
- Conducting a RO Analysis of Alternatives Study
 - Identify the hybrid capabilities that will fulfill NOAA requirements as COSMIC-2 degrades.
 - Identify the needs for a NOAA-owned RO constellation and if required

NESDIS Commercial Data Program Overview

Purpose: Acquire and assess value-added commercial *space-based environmental* observation data to support NOAA's mission.

The NESDIS Commercial Data Program (CDP) contains two lines of effort:

Commercial Weather Data Pilots:

Demonstrates the quality and impact of commercial data on weather, climate and space environment applications

Commercial Data Purchases:

Supports operational weather forecast applications

Hurricane Ida making landfall

NESDIS Commercial Data Program Information:

https://www.space.commerce.gov/business-with-noaa/commercial-weather-data-pilot-cwdp/

NESDIS CDP Operational RO Data Buys (RODB)

- NESDIS CDP successfully purchases and integrates commercial GNSS-RO data, which is a highly valuable input for operational weather modeling.
- Used in Operational NWP Neutral Atmosphere and Space Weather models

Radio Occultation Data Buy (RODB)-2 IDIQ Delivery Orders:

Delivery Order	Vendor	RO Profiles per day	Period of Performance	Length	Data Sharing License
DO-1T	PlanetiQ Spire	500 500	6 Apr 2023 – 4 May 2023	1 month	Unrestricted
DO-2	PlanetiQ	3100	18 Jul 2023 – 18 Jan 2024	6 months	Unrestricted
DO-3	Spire	3000	18 Jan 2024 – 18 Sep 2024	8 months	Unrestricted
DO-4	PlanetIQ Spire	2200 800	18 Sep 2024 – 18 Sep 2025	12 months	Unrestricted

Daily Assimilated RO Profiles

Source: NESDIS CDP, UCAR COSMIC 2023. **Commercial data consists of coordinated NOAA (CDP) and EUMETSAT purchases

Commercial GNSS-RO data from NESDIS CDP and EUMETSAT purchases now make up <u>nearly half</u> of all RO data assimilated into weather models.

GNSS-RO Data Operationally Assimilated by NOAA

Chart illustrates total RO data assimilated by NOAA as of 7/7/2024.

NESDIS Commercial Data Purchase Impacts

- Benefits of GNSS-RO observations for weather applications:
 - Cost-effective
 - Global coverage
 - Continuous monitoring under all weather conditions
 - Broad applications for space weather and climate prediction
- Enhancements of assimilating GNSS-RO into Numerical Weather Prediction models:
 - 10% forecast error reduction
 - o 10-20% tropical cyclone forecast skill improvements
 - Accuracy improvements extend across all forecast lead times

GNSS-RO receivers observe distortion of GNSS signals as they transit the atmosphere. NOAA produces quasi-vertical RO soundings based on bending angles from satellite-based RO open-loop measurements made during a GNSS occultation event.

2023-2024 NESDIS Commercial Weather Data Pilots

- Space Weather Pilot (ended in 2024): NESDIS CDP conducted a successful pilot study of exploiting commercial GNSS-RO data for space weather parameters.
 **The final report is now available.
- GNSS Ocean Surface Winds (OSW) GNSS Reflectometry Pilot (ongoing): NESDIS CDP is executing a pilot study to use commercial reflectometry data to derive ocean surface wind speeds and additional environmental measurements.

Through a Commercial Weather Data Pilot, NOAA is developing methods for determining ocean surface wind speeds globally using commercial GNSS-R (reflectometry) satellite data.

NOAA Data Sharing License Options

Operational Data Purchases	Option 1	Unlimited distribution rights
Data Pilots	Option 2	Distribution to U.S. Government agencies, National Meteorological Centers (NMC), WMO Met Centers, CGMS members, non profit organizations, Academic entities for non-commercial use with no further distribution
	Option 2a	Option 2 plus unlimited distribution after 24 hours

NESDIS CDP prefers less restricted data sharing options

Commercial Weather Data Pilots and Projects

Pilots:

- Microwave Sounder Pilot: Awarding a pilot (to begin in Nov/Dec 2024) to
 - Investigate the utility
 - Assess the quality and impact, primarily for the evaluation of atmospheric vertical temperature and moisture profiles measurements.
 - Leverage past microwave research from NASA's TROPICS mission.

Projects:

- HyperSpectral Microwave: Investigate utility of novel Hyperspectral Microwave technology
 - Leveraging efforts from SAE's own Joint Venture programm results will inform future CDP piloting efforts
- **Polarimetric RO:** Beginning to investigate the utility of PRO profiles to estimate precipitation rates and types
- **Space Weather:** Continued coordination on advancing TEC and Scintillation capabilities

2024-2025 NESDIS CDP Planning

Today DISCLAIMER: Notional, for planning purposes only, dates subject to change

NOAA Commercial Data Program Community Day September 26, 2024

Focus: General-Request for Information (G-RFI)

Virtual Event - Register Now

Radio Occultation Analysis of Alternatives (AoA) Phase 1 Overview

Study objectives:

 Identify the gaps in Radio Occultation (RO) coverage as COSMIC-2 degrades, and assess alternatives to meet NOAA's neutral atmosphere (NA) RO requirements through 2036.

Methodology:

- Assessed hybrid architectures composed of:
 - Partner missions
 - Commercial data
 - NOAA constellation
- Assessed performance over time, estimated costs, and risks.
 - Based on Coverage, refresh, and latency requirements.

Performance Analysis: Counts Conclusions

Baseline with 4000 commercial augmentation:

All count requirements will be satisfied through the assessed period with minimal (2,000+)commercially provided RO profiles

Takeaway:

RO Count requirements are met with commercial augmentation.

POLAR

TROPIC

GLOBAL

Performance Analysis: Counts Conclusions

- **Baseline** without commercial augmentation:
 - Global, tropic, and mid-latitude daily RO count requirement is satisfied until 2035
 - **Polar** daily RO count will be satisfied when MetOp-SG is launched but is currently failing

POLAR

TROPIC

IGLOBAL

Performance Analysis: Refresh Conclusions

HRS

PERCENT REFRESH OVER 6

Commercially Augmented Baseline (4,000/day)

National Environmental Satellite, Data, and Information Service

- Refresh for Baseline and 4000 Commercial
 - Currently the global refresh and uniform distribution requirement in not being met
 - COSMIC-2 carries a similar requirement in the **tropics**, so this meets ~90% performance
- Refresh is highly sensitive to COSMIC-2 loss/degradation, hence the step-function shown

 * Global grid defined as 500x500 km equal area grid between 85°S and 85°N latitude

*Polar, mid-latitude, and tropic refresh are not provided requirements and are only shown for relative contribution

Performance Analysis: Refresh Conclusions

- Added dedicated 6 Satellites at low-latitude orbit and 2 Additional Coordinated high-latitude orbit satellites.
 - Could be commercial contribution, LEO planned, NOAA-owned.
- Coordinated & diverse orbits are the most effective way to achieve refresh requirements
 - 2029 Launch was for modeling only
- The requirement can be achieved by:
 - (1) Maintain continuity from *coordinated & diverse* **low-latitude orbits**
 - (2) Increase observations made from *coordinated* & *diverse* high-latitude orbits

 * Global grid defined as 500x500 km equal area grid between 85°S and 85°N latitude

*Polar, mid-latitude, and tropic refresh are not provided requirements and are only shown for relative contribution

Key results

Key results:

- RO observing system is sensitive to the loss of COSMIC-2 in tropics and mid-latitudes
- Counts per day requirement is much easier to meet than refresh requirement
 - Count requirements can be met by partners and commercial
- Uniform distribution requirements and refresh cannot be met by partners and commercial
- NOAA-owned constellation in *low-inclination orbit* in addition to a coordinated and diverse constellation in *high-inclination* orbit would meet requirements by 2028-2031.
- Will continue this AoA analysis with a Phase 2 in FY25.

Phase 2 Next Steps

- Better understand the impact of NWP forecasts from deviations in RO capabilities
 - OSSE's, model sensitivities
 - Leverage ROMEX Results
- Expand partnerships
- Expand scope of study to include all of the products produced from an RO constellation, including
 - Ionospheric TEC
- Optimize the modeled constellations

Questions?

NESDIS CDP Organizational Email: nesdiscdp@noaa.gov Natalie Laudier, NESDIS CDP PM: natalie.laudier@noaa.gov Suzanna Espinoza, AGO (Contracting): suzanna.espinoza@noaa.gov Marc Gasbarro, NESDIS CDP Support: marc.gasbarro@noaa.gov Gerry Peltzer, NESDIS CDP Support: gerard.peltzer@noaa.gov

NESDIS Commercial Data Program Information:

https://www.space.commerce.gov/business-with-noaa/commercial-weather-data-pilot-cwdp/

Bullpen Slides

NOAA/NESDIS Commercial Data Program Background

- In 2016, NOAA began the NESDIS Commercial Data Program with a Radio Occultation Data Pilot.
- In 2020, awarded 1st Commercial Data Buy (RODB-1)
- Today, NOAA uses commercially available Radio Occultation (RO) data to respond to the demand for environmental information and satisfy observational requirements.
- Derive <u>Neutral Atmosphere</u> and <u>Ionospheric</u> products from Global Navigation Satellite System RO (GNSS-RO)
- Exploring non RO-based commercial space-based environmental monitoring data sources

Methodology of Study

Performance Analysis

One-year propagation simulation of 101 use cases executed

Sensors modeled based upon capabilities demonstrated in operations (or advertised for future missions)

Partners + 4k Commercial, No COSMIC-2

2024: Randomly Selected 6-Hour Refresh Sample (Requirement)

Note: If something seems visually off about these cells "not moving" over the course of years, it's because of the approach taken to model them; for expedience, only one year worth of data was modeled for every satellite on an arbitrary date. Various configurations by year were then combined based upon flyouts. This presents a small modeling error in that the ascending node of the GNSS satellites should be moving ~1-2 degrees per year. This is only meaningful over the course of one year if an observing satellite has very slow precession, which only occurs at pure polar orbits (~90 degrees).