

Results from CDAAC Processing of the ROMEX Excess Phase Data

J. Weiss, R. Anthes, D. Hunt, V. Petroni, J. Sjoberg, M. Sleziak-Sallee, S. Sokolovskiy, T. VanHove, H. Veitel, Z. Zeng

> COSMIC/JCSDA Workshop and IROWG-10 September 13, 2024

Thanks to all the data providers and EUMETSAT. Thanks to NOAA's Commercial Data Program for supporting this work.

- Motivations
- ROMEX processing updates and quality control
- A few metrics
 - Counts and coverage
 - Bending angle statistics
 - 3CH error estimates
 - STDV (high altitude bending angle noise)
 - Local spectral width
- Summary

- Most missions contributing to ROMEX already processed in near realtime or post-processing modes
- Gain initial experience processing new missions (for us)
 - Feng-Yun 3
 - Sentinel-6A
 - Tianmu
 - Yunyao
- For ROMEX effort, processing retrievals only starting from excess phase, so processing not independent of core EUMETSAT dataset
- For main goal of ROMEX to conduct NWP experiments, choice of data processing center is probably not important
- CDAAC provides local spectral width observation error estimates for each profile, which is not available from other centers

- Providing the usual "bad" flag with each ROMEX profile
- Quality control (QC) parameters for ROMEX are the same across all missions with exception of L1 SNR mean from 40-80 km
- SNR is measured differently depending on receiver, so tuned threshold used for each mission
- Some COSMIC-2 QC parameters were relaxed relative to operational processing in order to be consistent with other ROMEX missions
 - Impact on bending angle statistics appears negligible
 - In future we will evaluate using these parameters in operations
- QC parameters summarized on next slide

Quality Control for ROMEX Data

Global Attribute in atmPrf	Definition of Attribute	QC Threshold COSMIC-2 Ops	QC Threshold All ROMEX
reldevmax (fraction)	Maximum of abs value of fractional difference of retrieved BA from climatology between 25 - 40 km	reldevmax <= 0.25	<= 0.3
difmaxref (fraction)	Maximum of abs value of fractional difference of retrieved N from climatology between 10 - 60 km	difmaxref <= 0.5	Same
qcl2d (m/sample)	Maximum of abs value of difference of raw L1 - L2 Dopplers between 20 - 40 km	qcl2d <= 0.1	Same
stdv (mcrad)	standard deviation of retrieved BA from climatology between 60 - 80 km	stdv <= 150	Same
smean (mcrad)	mean deviation of retrieved BA from climatology between 60 - 80 km	smean <= 100	<= 300
snr1avg (V/V)	L1 SNR averaged between 40 - 80 km	snr1avg >= 200	Depends on mission

• Average = 37614/day

CDAAC ROMEX RO Profile Counts

Mission	Total Profiles	Average Profiles/Day
COSMIC-2	522811	5745
FY3	180858	1988
GeoOptics	12564	138
GNOMES (PlanetIQ)	279410	3070
Kompsat-5	13930	153
MetOp-B	37695	414
MetOp-C	36239	398
PAZ	16281	179
Sentinel-6A	85987	945
Spire (Full Dataset)	1208807	17777
TanDEM-X	12315	135
TianMu	20822	229
TerraSAR-X	18087	199
Yunyao	568173	6244

"Big 4"

• Showing daily occultation locations (left) and daily count in 5x5 deg lat/lon bins (right)

• Showing daily occultation locations (left) and daily count in 5x5 deg lat/lon bins (right)

• Generally consistent mean and st dev vs. altitude across missions

• Zoom in on biases

Geographic Coverage (4 Missions, 1 Week)

Local Time Coverage (4 Missions, 1 Week)

Global STDV (60-80 km BA Noise) (4 Missions, 1 Week)

OSMIC

券UCAR

Local Spectral Width (4 Missions, 1 Week)

ICAR

LSW (gnomesrmx) (2022-09-29 to 2022-10-05) LSW (coseqrmx) (2022-09-29 to 2022-10-05) COSMIC-2 GNOMES 60°I 60°N 30°N 30°N 0° 30°S 30°S 60°S 60°S LSW (yunyaormx) (2022-09-29 to 2022-10-05) LSW (spirermxeu) (2022-09-29 to 2022-10-05) Spire Yunyao 60°N 30°N 30°N 30°S 30°S 60°S 60°S 0.25 1.00 1.25 1.50 1.75 0.25 1.50 1.75 0.00 0.50 0.75 2.00 0.00 0.50 0.75 1.00 1.25 2.00 LSW RMS 0-2.5 km (mrad) LSW RMS 0-2.5 km (mrad)

- CDAAC team completed processing of the ROMEX dataset
- Using consistent software, processing strategy, and QC
- Results appear generally reasonable and consistent with operational processing
- UCAR and EUMETSAT processing results show remarkable consistency
- Evaluations of C2 bias relative ongoing, working with JPL team
- Looking forward to NWP center experiments
- Thanks to all the partners supporting this international collaboration
- ROMEX datasets will enable many interesting NWP and science studies

Global Profile Bottom Height (4 Missions, 1 Week)

Map shows global distribution of COSMIC-2 BAU based on local spectral width RMS from 0-2.5 km; can be used for development of the error model for DA, which depends on latitude, longitude

- However, even in the regions with statistically homogeneous distribution of BAU, the difference of BAU between different occultations may be significant
- Sub-sets of occultations with different BAU have different random errors and biases (see next slide)
- This suggest using BAU for changing weights of individual occultations in DA

Region of deep moist convection

• BAU and BA statistics in the region of deep moist convection from previous slide

- For FY3, we needed to
 - Add necessary attributes and rename certain variables (occfreq1, occfreq2, startTime, stopTime, [xyz]Gps, [xd,yd,zd]Gps)
 - Fill in variables (xmdl and xmdl2) which tell when open/closed loop data begin and end
 - Phase connect open loop data; we were unable to get navigation bits to apply correctly due to some time tag errors in the data, so we performed 2 quadrant phase connection
- For Spire, we needed to
 - Add necessary attributes to data (occfreq1, occfreq2)
 - Connect first and second frequency phases, using external nav bits when necessary
- For Tianmu, we needed to
 - Add necessary attributes to data (occfreq1, occfreq2, startTime, stopTime)
 - Connect first and second frequency phases with 2 quadrant phase connection; we did not have the nav bits necessary for the BeiDou signals tracked