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Geolocation of the ionospheric scintillation
in the equatorial F-layer from COSMIC-2

1) Principles and numerical modeling
2) Back propagation of real signals
3) Processing of COSMIC-2 data
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where irregularities are located? scintillation
Tx = Observed

, here

e Scintillation is caused
by different mechanisms

e Equatorial ionosphere: orbit
field-aligned irregularities inside ionosphere
plasma bubbles

e Different methods considered
for localization (Carrano et al.)

de-trended L1 phase L1 amplitude (SNR)

® Back propagation (BP): solving
wave equation in a vacuum by
using phase and amplitude at Rx
as the boundary condition

01 F

® Assumptions & approximations:
- phase screen approximation

- anizotropic irregularities

- known orientation ' L

time (sec) time (sec)

de—trended L1 phase (m)
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A ﬁ Localization of irregularities by 2D back propagation #x UCAR

FP Tx=>Rx PS at 0 km
® The signal is observed on 1D Rx trajectory: BP is 2D. 40 = —
® Thus, the irregularities projected on the phase screen _ E = :
must be 1D. % =
e This allows projecting signal from any Rx trajectory = ——
on the BP plane defined perpendicular to irregularities oA :g

on the phase screen.
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ACoswic Geolocation error: orientation of irregularities 22 UCAR

® Projection of the signal from Rx to BP trajectory

is equivalent to scaling z by a factor cos a
® Error Aa results in the geolocation error which L=1000km 6 km 21 km 78 km

also depends on a and distance from Rx to irrerg. L=3000km 17 km 63 km 235 km
® IGRF model is accurate to ~1% 90% of the time L=5000km 28 km 105 km 392 km
(Matteo and Morton, 2011)
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4@4/’5 Modeling of geolocation: two regions with irregularities ¥ UCAR

Multiple regions with irregularities along the Tx-Rx LOS are not consistent with the phase screen approximation.

Two regions with the same orientation of irregularities
but different o4, modeled by Ludwig-Barbosa et al.,

(2023), confirmed in this study.
Result: two regions cannot be resolved;

only the region with larger g4 can be geolocated.
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3D forward
and 2D back
propagation

Two regions with the same o4, but different orientations

of irregularities, first time modeled in this study.
2D FP is invalid; 3D FP is used instead; BP is 2D.
Result: two regions cannot be resolved;

only the region with smaller a can be geolocated.
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Geolocation using real observational data (step 1)
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® BP applied in 10-sec
intervals

Step 1. For each interval:

® BP plane is defined
by using direction
of magnetic field at
anticipated location
of irregularities

® Tx and Rx trajectories
are projected on BP
plane

Tx
trajectory
in 3D space

trajectory
projected
on BP Plane

irregularities projected
on PS at anticipated
location

LOS scan
trajectory
z ;
A K vector of
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a7} 2 f';;'d Rx
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% /" < Bl ri
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projected on
BP Plane
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Step 2. "Stationarization". Solving wave equation requires stationary Tx.
Fixing Tx at mid-point of 10-sec interval. Correcting Rx positions. Correcting phases.

corrected
phase RX position
e e corrected
A "o
z \XZ’ZZ i RX position
\ .
true Zg : )c:ptlgrj 2
iti 20,22
X );(Jozltlon e i
i position X5,z !
corrected : : : —3 =
TX position propagation direction 0 RX position : X
(fixed at at mid-point :
mid-point) X20,0 i
X10,0 : \

Step 3. Correction of the phase front curvature. Projection of signal on BP plane
reduces wavefront curvature radius by a factor R cos?a.
Correction term —z%tan?a /2R is added to the phase.



Geolocation, COSMIC-2 observational data
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amplitude (SNR) (V/V)

de-trended phase (m)

S4, sigma_phi (rad)
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An example of COSMIC-2 scintillation
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Important: distance to minimum V(L)
depends on orientation of BP plane
defined by angle a
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c@ﬁ’i Examples of geolocations, COSMIC-2 observational data z‘\z UCAR
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1) single-valued geolocation
2) single-valued geolocation
3) multi-valued geolocation

Multiple regions with irregularities
may not cause multiple geolocations
(based on numerical modeling)

Question:
What causes multi-valued
geolocations?

Answer:

Specific structure of the function
cos a(L) along LOS

(next slide)
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a set of degenerate functlons cos a(L)

The "degenerate function" cos a(L) R b R e e =
is such thatforallL: L., = Ly Gl e
defined for a given location of the phase Z'j B B -
screen and a given « at that location. o5 L Il 9y P Cat ol
z 0.5 = ,,.:’,’.‘f,',"r" : ,,,, e |
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Equatorial geolocations from COSMIC-2 for two years

C((:)SMI(
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e Distributions
of geolocations
obtained from
different months
and years

COSMIC-2
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C(@;,f Geolocations obtained from COSMIC-2 L1 and L2 signals 71\' UCAR

e Commonly, L1 signal is used for geolocations (higher SNR and more reliable tracking)

® During test period 2021.050-060, was also used (L2P occultations were excluded from analysis)
e Generally, L1 and L2 geolocations are in good agreement (longitudinal stand. deviation 1.3deg);
this may be considered an internal validation of the method

e However, large differences need further investigation

Year 2021 DOY 050 060 L1 |2  mean=0.01deg, RMS=1.33deg
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e Numerical modeling:

- evaluation of accuracy
- geolocation of multiple regions (incl. 3D FP)
- explanation of multi-valued geolocations

® Back propagation of real observational data
® Geolocations from 2 years of COSMIC-2 data

e Comparison of L1 and L2 geolocations
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