

Geolocation of the ionospheric scintillation in the equatorial F-layer from COSMIC-2

Principles and numerical modeling
 Back propagation of real signals
 Processing of COSMIC-2 data

S. Sokolovskiy¹, I. Zakharenkova¹, D. Hunt¹, J. Braun¹, J.-P. Weiss¹, W. Schreiner¹, Iu. Cherniak¹, Q. Wu², T. Vanhove¹

¹ University Corporation for Atmospheric Research, Boulder, CO ² National Center for Atmospheric Research, Boulder, CO

COSMIC/JSDA Workshop and IROWG-10 Meeting, Boulder CO, September 12-18, 2024

• Scintillation is caused by different mechanisms

- Equatorial ionosphere: field-aligned irregularities inside plasma bubbles
- Different methods considered for localization (Carrano et al.)
- Back propagation (BP): solving wave equation in a vacuum by using phase and amplitude at Rx as the boundary condition
- Assumptions & approximations:
- phase screen approximation
- anizotropic irregularities
- known orientation

Localization of irregularities by 2D back propagation

• The signal is observed on 1D Rx trajectory: BP is 2D.

- Thus, the irregularities projected on the phase screen must be 1D.
- This allows projecting signal from any Rx trajectory on the BP plane defined perpendicular to irregularities on the phase screen.

• Projection of the signal from Rx to BP trajectory is equivalent to scaling z by a factor $cos \alpha$

- Error $\Delta \alpha$ results in the geolocation error which also depends on α and distance from Rx to irrerg.
- IGRF model is accurate to ~1% 90% of the time (Matteo and Morton, 2011)

$\Delta \boldsymbol{\alpha} = 0.6^{\circ}$	$\alpha = 15^{\circ}$	$\alpha = 45^{\circ}$	$\alpha = 75^{\circ}$
L=1000km	6 km	21 km	78 km
L=3000km	17 km	63 km	235 km
L=5000km	28 km	105 km	392 km

Modeling of geolocation: two regions with irregularities 🗱 UCAR

Multiple regions with irregularities along the Tx-Rx LOS are not consistent with the phase screen approximation.

Two regions with the same orientation of irregularities but different σ_{ϕ} , modeled by Ludwig-Barbosa et al., (2023), confirmed in this study. Result: two regions cannot be resolved;

only the region with larger σ_ϕ can be geolocated.

Two regions with the same σ_{ϕ} but different orientations of irregularities, first time modeled in this study. 2D FP is invalid; 3D FP is used instead; BP is 2D. Result: two regions cannot be resolved; only the region with smaller α can be geolocated.

• BP applied in 10-sec intervals

Step 1. For each interval:

- BP plane is defined by using direction of magnetic field at anticipated location of irregularities
- Tx and Rx trajectories are projected on BP plane

Step 2. "Stationarization". Solving wave equation requires stationary Tx. Fixing Tx at mid-point of 10-sec interval. Correcting Rx positions. Correcting phases.

Step 3. Correction of the phase front curvature. Projection of signal on BP plane reduces wavefront curvature radius by a factor $R \cos^2 \alpha$. Correction term $-z^2 tan^2 \alpha/2R$ is added to the phase.

An example of COSMIC-2 scintillation

- A: amplitude
- **B: de-trended phase**
- C: S4 and sigma_phi

A: BP amplitude B: normed amplitude variance V(L) Important: distance to minimum V(L) depends on orientation of BP plane defined by angle α A: BP applied for 3 orientations of BP plane corresponding to α defined by magnetic field (MF)

B: $D(L) = L_{min} - L_{MF}$ calculated for the set of L_{MF} ; D(L)=0 is the geolocation

Examples of geolocations, COSMIC-2 observational data 💥 UCAR

single-valued geolocation
 single-valued geolocation
 multi-valued geolocation

Multiple regions with irregularities may not cause multiple geolocations (based on numerical modeling)

Question:

What causes multi-valued geolocations?

Answer:

Specific structure of the function $\cos \alpha(L)$ along LOS (next slide)

$\alpha(L)$ $\alpha(L)$ $\alpha(L)$

The "degenerate function" $\cos \alpha(L)$ is such that **for all L:** $L_{min} = L_{MF}$ defined for a given location of the phase screen and a given α at that location.

If a real function $\cos \alpha(L)$ crosses the "degenerate function" multiple times, there are multiple geolocations.

Monotonically decreasing functions $\cos \alpha(L)$ result in only single-valued geolocations.

It is not possible to distinguish true and false geolocations based on the structures of V(L).

Equatorial geolocations from COSMIC-2 for two years

March

June

September

Distributions of geolocations obtained from COSMIC-2 POD antenna in different months and years

- Multi-valued geolocations are excluded
- Seasonal
 variation pattern
 Inter-annual
 variation (corr.
 with solar cycle)
- ¹⁵⁰ numbers
- ¹⁰⁰ of geolocations
- 50 in 3x3deg bins

Geolocations obtained from COSMIC-2 L1 and L2 signals

- Commonly, L1 signal is used for geolocations (higher SNR and more reliable tracking)
- During test period 2021.050-060, was also used (L2P occultations were excluded from analysis)
- Generally, L1 and L2 geolocations are in good agreement (longitudinal stand. deviation 1.3deg); this may be considered an internal validation of the method
- However, large differences need further investigation

- Numerical modeling:
- evaluation of accuracy
- geolocation of multiple regions (incl. 3D FP)
- explanation of multi-valued geolocations
- Back propagation of real observational data
- Geolocations from 2 years of COSMIC-2 data
- Comparison of L1 and L2 geolocations

