

औ

 \approx

是

IROWG10 September 13, 2024

RO Impacts and Advances in NOAA NWP Operation

Xuanli Li¹, Christopher Riedel², Catherine Thomas³, Jeremiah Sjoberg⁴, Haixia Liu⁵, Daryl Kleist³, Lidia Cucurull⁶, Richard Anthes⁴, Xin Jin¹, Andrew Collard³

> ¹ SAIC @ NOAA/NWS/NCEP/EMC ² UCAR/CAPESS@OAR/ORTA/QOSAP ³ NOAA/NWS/NCEP/EMC ⁴ UCAR COSMIC ⁵ Lynker @ NOAA/NWS/NCEP/EMC ⁶NOAA/OAR/QOSAP

答 Outline

 \approx

DOL

- RO data assimilation in GFS and GDAS v16 at NCEP EMC
- RO data impact on forecast
- RO optimization
- Future directions

ž

औ

K~

DOD

 \mathbb{Z}

12

GFS and GDAS

- FV3 dynamic core
- Operational: C768 (13 km), 127 vertical levels, 80 km model top
 - GFDL microphysics
 - GDAS v16
 - Gridpoint Statistical Interpolation (GSI) based hybrid 4D-EnVar system
 - 25 km ensemble analysis, 80 members, 13 km deterministic forecast
 - 4D Incremental Analysis Update, LETKF ensemble update
 - Numerous types of observations assimilated including:
 - Satellite radiances (using CRTM)
 - Satellite-based ozone and winds
 - Conventional
 - GNSS-RO

RO Observation Operator and Observation Error

• Total refractivity N (Rueger 2002):

औ

 \approx

DOD

12

$$N = k_1(\frac{P}{T}) Z_d^{-1} + k_2(\frac{e}{T}) Z_w^{-1} + k_3(\frac{e}{T^2}) Z_w^{-1}$$

• NBAM 1-D bending angle (Cucurull et al. 2013):

$$\alpha(a) = -2a \int_a^\infty \frac{d\ln n/dx}{\sqrt{(x^2 - a^2)}} dx, \quad x = nr$$

RO observation error (Desroziers et al. 2005)

- 2-D function of latitude and impact height
- Latitude: 40° N 40° S and > 40°
- Height: <12 km, 12-18 km, and > 18 km (2 additional regions for COSMIC-2 and commercial data: <4 km and 4-8 km)
- · Inflated by square root of number of obs within a grid

ज़ौ

 \approx

THE

 \mathbb{A}

17

RO Data Quality Control

- Reject data with quality flags
- Super-refraction: impact height < 5 km (Cucurull et al. 2013)
 - $\left|\frac{dN}{dr}\right| \ge 0.75 \ CV$ or
 - $\left|\frac{dN}{dr}\right| \ge 0.5 \ CV$ and $\max(\alpha) > 30 \ mrad$
- Model level 3 55 km (45 km for commercial data)
- Maximum value: 50 mrad
- O-B/Error gross check
- MetOp data below 8 km
- Statistic QC $|O-B|/O > X\sigma$ (Cucurull et al. 2013):
 - σ specified via statistical fit to observed σ
 - > 35 km: 1 σ COSMIC-2/commercial, 2 σ others
 - 10-35 km: 2σ COSMIC-2/commercial, 3σ others
 - < 10 km: 1σ COSMIC-2/commercial, 2σ others

Commercial RO Data

ž

ন্থ্য

x

DOL

- NOAA NESDIS CDP Radio Occultation Data Buy (RODB) contracts:
 - RODB-1: 5 delivery orders (DOs) in 2020-2023
 - Implemented May 2021 and September 2021
 - DO-1: GeoOptics 500 Profiles/day and Spire 500 Profiles/day
 - DO-2: GeoOptics 1,300 Profiles/day
 - DO-3: Spire 3,000 Profiles/day
 - DO-4: GeoOptics 500 Profiles/day and Spire 5,500 Profiles/day
 - DO-5: Spire 3,100 Profiles/day + EUMETSAT Spire 1,600 Profiles/day
 - RODB-2: Awarded to Spire and PlanetiQ in 2023 with a 5-year ordering period
 - Implemented September 2023
 - DO-1T: PlanetiQ 500 Profiles/day and Spire 500 Profiles/day
 - DO-2: PlanetiQ 3,100 Profiles/day
 - DO-3: Spire 6,000 3,000 Profiles/day (<1,000 in August 2024) + EUMETSAT Spire 1,600 Profiles/day

RODB-1 DO-4 Assessment

ž

औ

 \approx

DOL

1

- DO-4 : March 2022 January 2023
- Data Denial Experiment: 24 March 24 April 2022
 - v16_ctl: Control run with DO-4 data (~500 GeoOptics and ~5,500 Spire)
 - v16_do4: Data denial experiment without DO-4 data
- Configuration: Global parallel experiments GFS v16.1.6, C384 (25 km) resolution

Data from both Spire and GeoOptics show quality comparable to existing missions

20220324 - 20220424

Data Impact - Fit to Radiosondes ž

Bias O-F (2022032400-2022042400)

RMSE O-F (2022032400-2022042400)

- Slightly larger bias in temperature below 500 hPa; Less bias in relative humidity from 900 to 150 hPa
- Slightly smaller RMSE in wind above 300 hPa; Smaller RMSE in RH at 250 hPa

14

Scorecard: Fit to ECMWF Analysis

Mostly neutral

Improvement: AC for HGT, wind, and T in SH; RMSE for wind and T in SH; RMSE for wind and T in Tropics.

Degradation: Height bias in NH, SH, and tropics; T bias at low troposphere in NH and SH.

ROBD-2 DO-2 PlanetiQ Verification Experiment

- RODB-2 DO-2: in July 2023 with PlanetiQ 3,100 Profiles/day
- Global workflow v16.3.7; 80 ensemble members; C768 (13 km) resolution
- Verification Time Period: 19 July 29 August 2023
- gfs: Operational run without PlanetiQ data

. जौ

 \approx

DOD

1

v1637piq: Experiment with operational RO data + PlanetiQ data (~650 profiles/cycle)

The statistics of PlanetiQ were similar to Spire

Scorecard – Fit to ECMWF Analysis

Scorecard Sym	bol Legend
v1637piq is better than gfs at the 99.9% significance level	 v1637piq is worse than gfs at the 99.9% significance level
v1637piq is better than gfs at the 99% significance level	 v1637piq is worse than gfs at the 99% significance level
v1637piq is better than gfs at the 95% significance level	v1637piq is worse than gfs at the 95% significance level
No statistically significant difference between v1637piq and gfs	Not statistically relevant
Dates: 20230719	9-20230829

12

				. 1	i. An	teriç	a		ù	N.	Hem	isph	ere		S. Hemisphere							Tropics						
			Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10		
		10hPa	0 0		0.0	0 0	0 0	М	9 - S	0.00	0 0	0.0	0 0	М	0 0	0.00	а. 1	1	0 0	М	0.00	0 (0.0		Μ		
		20hPa	0.0	0.0	0 0			Μ				0 0		М						Μ		S 8		0 0		Μ		
		50hPa				8	3 8	М	•		8		0 0	М		3 8	0 0		3 B	Μ				0 0	2 8	Μ		
		100hPa						М						М						Μ						Μ		
	Heights	200hPa						Μ	•					М						Μ						Μ		
		500hPa						М						М						Μ						Μ		
		700hPa				0	8 8	Μ			8			Μ	1	3 (S)			8 8	Μ				0 0		Μ		
		850hPa						Μ						Μ						Μ						Μ		
		1000hPa		1 1				Μ		1				Μ						Μ						Μ		
	Wind Speed	10hPa						М						М						Μ						Μ		
		20hPa	a 9		3	0 0	2 2	Μ			0	3 2	2 92	Μ	a 9		3	2 9	3 9	Μ	2 2	0. 9		2 12		Μ		
		50hPa	0 0		0 0		0.0	Μ	0 0	0 0		0 0		Μ			8 8		0 0	Μ	0.0			0 0		Μ		
12135		100hPa						Μ						Μ						Μ						Μ		
Bias		200hPa	i i					Μ				i li		Μ						Μ						M		
		500hPa				2		Μ		a a		2 2		М	<u>a a</u>		8 - 12			M				2 12		Μ		
		700hPa						Μ					1	Μ			1			Μ						Μ		
		850hPa	8 8	8 8	8 8	8 8	3 8	M	0 0	8 8	8 8		8 8	M	8 8	3 8		2 2	8 8	M	8 8	8 8	3 8	8 8	<u></u>	M		
		TOOOhPa				_		M						M					_	M			_			M		
		10hPa						M						Μ						M					•	M		
		20hPa			2 2	a 3)	2 5	M						M	2 5		2 5			M	2 2			2		M		
		50hPa		0 0		0		M	0 20	0 0				M			~ ~			M				0 0		M		
		100hPa			2 0	s3	2	M		0 0	<u> </u>			M	oo					M		10				M		
	Temp	200hPa						M						M						M						M		
		500hPa	8 8	0 0	8 8	8 8	3 8	M	8 8	8 8	8 8	8 8	8 8	M	<u>e 8</u>	8 8	8 8	8 8	8 8	M	8 8		3 - 2	8 6	<u>, </u>	M		
		/00hPa	-	-				M						M						M	_	_				M		
		850hPa						M			0			M					0. 24	M					0 20	M		
		1000hPa	0 0	a 4		0 0	3 9	M	. * .,	2 9	0 0	2 2	2 92	M	0 9	3 9	2 2	8 9	3 3	M	3 9	J - 1	0.0	a 12	3 9	M		

- Green: Improvement Red: Degradation
- Neutral to slightly positive impact
- Improvement: RMSE for both wind and temperature near 50 hPa in NH and SH
- Less significant impact when compared to DO-4, partly due to smaller data volume

送 GFSv17 Overview

- 5-way weakly coupled system
 - Atmosphere
 - Ocean and Sea ice
 - Land
 - Waves
 - Aerosol (Non-interactive in GDAS deterministic forecast only)
 - ATM DA updates
 - Thompson microphysics/all sky upgrades
 - Scale-Dependent Localization
 - New observations: satellite radiance, GNSS RO, satwind, saildrones

四

<u>त्रौँ</u>

 \approx

 \mathbf{V}

. کخ

औ

 \approx

DOD

 \mathbb{A}

New Hybrid Obs Error Model

- Error model is defined in 3 vertical regions
- STD4060 => Blue Region (30-60 km)
 - Standard deviation between observation values and an exponential fit for impact heights between 40-60 KM
- Constant Statistical 3CHMethod Error => Grey Region (10-30 km)
 - Relative error of 1.25%
- Fractional LSW => Red Region (<10 km)
 - Use fractional LSW (LSW/Bending-angle)
 to compute relative error
 - Special treatment:
 - Fractional LSW > 40 => Fractional LSW = 40

GSI Obs Error vs. New Hybrid Error Model

 On average, the hybrid error model increases the obs error at <10 km, while decreasing the error above 15 km

ž

जै.

 \approx

DOL

 \mathbf{A}

112

 More variation in obs error in hybrid error model

20210101 - 20210131

जौ

 \approx

DOD

 \mathbb{Z}

112

New QC

- New QC:
 - (O-B)/B > 3σ (σ is the 3CH global statistical uncertainty
 - May eliminate too many observations between 10-30 km.
- Increase in the number of assimilated observation > 30 km and < 10 km
- Tropics: largest reduction between 15-30 km. Large increase < 5 km.
- 10-30 km: Reduction of 2-10% in the number of assimilated observations

12

NORA

v17 Testing

Forecast Bias

Forecast RMS

20230101 - 20230228

- Larger bias and RMS of O-B/B in troposphere and > 35 km due to changes in QC
- Atmosphere-only DA

v17 Testing

ž

जै.

 \approx

DOD

 \square

- Verification: 20230101-20230128 against ECMWF Analysis
- Impact is mostly neutral
- Degradation in RMSE for heights over Tropics
- Improvement in wind bias over Tropics
- Green: Improvement Red: Degradation

 EXP1-NewErr-NewQC is better than V17-CleanCtl at the 99.9% significance level 	EXP1-NewErr-NewQC is worse than V17-CleanCtl at the 99.9% significance level											
 EXP1-NewErr-NewQC is better than V17-CleanCtl at the 99% significance level 	EXP1-NewErr-NewQC is worse than V17-CleanCtl at the 99% significance level											
EXP1-NewErr-NewQC is better than V17-CleanCtl at the 95% significance level	EXP1-NewErr-NewQC is worse than V17-CleanCtl at the 95% significance level											
No statistically significant difference between EXP1-NewErr-NewQC and V17-CleanCt	Not statistically relevant											
Dates: 20230101-20230228												

			N. America						N. Hemisphere							S.	Hem	isph	ere		Tropics						
			Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	
		250hPa					Μ	М					М	М					М	М							
		500hPa					Μ	Μ					М	Μ					Μ	М							
	Heights	700hPa					Μ	Μ					Μ	Μ		1			Μ	М							
Anomaly Correlation Coefficient		1000hPa					Μ	Μ					М	Μ				1	Μ	М							
		250hPa					Μ	Μ					M	Μ					Μ	Μ							
	Vector	500hPa					М	М					М	Μ					Μ	М							
	Wind	850hPa					Μ	Μ					М	Μ					Μ	Μ							
		250hPa					Μ	Μ					Μ	Μ					Μ	М							
	Temp	500hPa					Μ	Μ					Μ	Μ					Μ	Μ	1						
		850hPa					М	Μ					М	Μ					Μ	М							
	MSLP	MSL					Μ	Μ		· · · · ·			Μ	Μ					Μ	Μ							
		10hPa					м	Μ					M	M					Μ	М	•	•			Μ	М	
		20hPa					М	Μ					М	М		-			M	М	•	•	•		Μ	M	
		50hPa					Μ	Μ					M	Μ					Μ	Μ					M	Μ	
		100hPa					М	Μ					Μ	Μ					M	М		•			Μ	Μ	
	Heights	200hPa					Μ	Μ	•				Μ	Μ	•				Μ	Μ	•	•			M	Μ	
		500hPa					Μ	Μ					Μ	Μ	•				M	Μ	•				M	M	
		700hPa					M	M					M	M					M	M					M	M	
		850hPa					M	M					M	M	A		-		M	M				-	M	M	
		1000hPa					M	M					M	M					M	M					M	M	
		10hPa 20hPa	2	-			M	M		-			M	M	-			-	M	M					M	M	
		50hPa	•	-		-	M	M	•				M	M				-	M	M	÷			-	M	M	
		100hPa		-			M	M					M	M				-	M	M					M	M	
RMSE	Vector	200hPa	~				M	M		-			M	M		-		-	M	M	-	-			M	M	
1200000	Wind	500hPa	8				М	Μ					M	Μ					M	Μ		-	-		M	Μ	
		700hPa					м	Μ				-	М	М					Μ	М					Μ	М	
		850hPa	8				Μ	Μ					Μ	Μ					M	Μ					M	Μ	
		1000hPa					Μ	Μ					Μ	Μ					Μ	М					M	Μ	
	Temp	10hPa					M	Μ					M	Μ					Μ	Μ			-		Μ	Μ	
		20hPa					М	Μ					M	M					M	М				-	M	M	
		50hPa	•	_			M	M	•	•			M	M					M	M	_	-	_	-	M	M	
		100hPa		-			M	M		-			M	M		-		-	M	M		-		-	M	M	
		200hPa					M	M		-		-	M	M		-			M	M					M	M	
		700hPa	0				M	M					M	M	•	-	-		M	M	-				M	M	
		850hPa					M	M					M	M	Ť				M	M					M	M	
		1000hPa					M	M		5		2 - S	M	M					M	M	•				M	M	
		10bPa					M	M				-	M	M					M	м	-	-	-	-	M	M	
		20hPa					M	M	-	÷	-		M	M	÷	÷	÷	÷	M	M	÷	Ť	÷	÷	M	M	
		50hPa					M	M					M	M		•			M	M					M	M	
		100hPa					м	Μ	•	•	•		М	Μ	•			•	Μ	м		•	•	•	M	Μ	
	Heights	200hPa	•				Μ	Μ	•	•	•		Μ	Μ	•	•		•	Μ	Μ	•			•	Μ	M	
		500hPa					м	Μ	•	•			Μ	Μ	•				M	м	•	•			M	M	
		700hPa					M	M					M	M			•	*	M	M	•	-			M	M	
		850hPa					M	M					M	M					M	M			-	-	M	M	
		10hPa					M	M		-		-	M	M					M	M					M	M	
		20hPa					м	М					M	M					M	м					M	M	
		50hPa					Μ	Μ					Μ	Μ					Μ	М					M	Μ	
1000000	Wind	100hPa					Μ	Μ					Μ	Μ					Μ	М					Μ	Μ	
Bias	Speed	200hPa					M	M					M	M					M	M					M	M	
	10	500hPa					M	M					M	M		-			M	M	*		_	-	M	M	
		850hPa	-			-	M	M					M	M					M	M		-	-	-	M	M	
		1000hPa					M	M					M	M					M	M					M	M	
		10hPa					М	Μ					М	М					Μ	м			-		M	М	
		20hPa					Μ	Μ					Μ	Μ					Μ	Μ		•		▼	Μ	M	
		50hPa					Μ	Μ					Μ	Μ					Μ	М	•				M	M	
	-	100hPa	•				M	M	•	•	•		M	M			_		M	M	•				M	M	
	Temp	200hPa	-				M	M		-			M	M	-	-			M	M					M	M	
		700hPa					M	M		1			M	M		-			M	M	÷	1	1÷		M	M	
		850hPa					M	M					M	M					M	M					M	M	
		1000hPa					M	Μ					M	M					M	М	•	•	•	•	M	M	

答 Future Directions

<u>त्रौँ</u>

 \approx

DOL

- ROMEX experiments with GFSv17
- Optimization of obs error and QC
- Joint Effort for Data assimilation Integration (JEDI)
 - Collaborative effort on next generation of DA infrastructure
 - GFSv18: JEDI-based atmosphere DA (complete transition away from GSI)
 - JEDI T2O
 - Exploring the multiple observation operators for RO, improved quality control and observation error specification
 - Begin exploring the assimilation of GNSS-R products, including OSW and potentially soil moisture within the coupled DA context
 - Monitoring advancements in the utilization of GNSS PRO data and the development of PRO assimilation

