

Assimilation of GNSS Radio Occultation Data in CWA's Regional NWP System: Operational Use and Recent Development

Ying-Jhen Chen¹ Guo-Yuan Lian¹ Jing-Shan Hong¹ Shu-Ya Chen²

Central Weather Administration, Taipei, Taiwan¹

GPS Science and Application Research Center, National Central University, Taoyuan, Taiwan²

13 Sep 2024

COSMIC / JCSDA Workshop and IROWG-10 Meeting

Current Configuration of CWA regional NWP system

• CWAWRF, the regional numerical weather prediction system in Central Weather Administration (CWA) of Taiwan

- Weather Research & Forecasting (WRF) Model v4.4.2 / WRF Data Assimilation (WRFDA) v3.9.1
- A parent domain (dx = 15 km) and a nested domain (dx = 3 km).
- 52 vertical levels and model top is at 20 hPa
- Hybrid 3DEnVar, with flow-dependence background error covariance from the CWA EAKF
- Partial cycling with analysis blending
- Forecast length: 126 hours, 4 times per day (00, 06, 12 and 18 UTC)
- Operationally Assimilated Observations : Synoptic observations (SYNOP), ship observations (SHIP), meteorological terminal aviation weather reports (METAR), soundings (TEMP), airplane reports (AIREP), buoys (BUOY), ground-based GPS zenith total delay data (GPSZD) and FORMOSAT-7/COSMIC-2 (FS7/C2) RO refractivity (GPSRF), profiler data (PROFL; only used in outer domain)

*In CWA Global model (TGFS), FS7/C2 RO **banding angle** is assimilated

However,

it is challenging to evaluate the data impact on the regional model forecasts under this framework

Allow sufficient time to accumulate and amplify the effect of FS7/C2 RO assimilation

Central Weather Administration 交通部中央氣象署

domain

By assimilating the FS7/C2 RO Refractivity data into CWAWRF, several improvements were identified:

- 1. reduced forecast errors at synoptic scale
- better initial typhoon structures 2.
- **3.** reduced the typhoon track errors

FORMOSAT-7/COSMIC-2 (FS7/C2) Contributions in NWP

(Chen et al. 2022)

RO Quality Control (QC) and Analysis Increment

(g/kg)

atio

Ø

ratio (g/kg)

mixing

mixing ratio (g/kg)

-0.12 Jodes -0.16 des -0.2 -0.12 -0.2 > -0.24 O

150°E

[with_RO – no_RO] Difference in mean analysis increment

QVapor (g/kg)

10°N

90°E

105°E

120°E

135°E

交通部中央氣象署 Central Weather Administration

RO Impact on the Synoptic Forecasts

[with_RO – no_RO] 72-h forecast root-mean-square-error (RMSE) reduction (in the 23-day assimilation period; averaged over the 15-km domain)

Lower is better

RO Impact on the Typhoon Analysis

FS7/C2 RO data assimilation helps the regional NWP system to develop a realistic typhoon structure in its **analysis** (i.e., initial conditions for model forecast).

Typhoon Haishen

no_RO

with_RO

Himawari satellite image of Typhoon Haishen

Contour: Sea level pressure (hPa) Shade: Wind speed (m/s)

RO Impact on the Typhoon Forecast

With better initial conditions, FS7/C2 RO data assimilation further improves the typhoon track and intensity forecasts.

(15 Aug to 7 Sep 2020, ~75 forecast cases)

Local vs. Nonlocal RO Observation Operators

- RO refractivity is **operationally** assimilated in CWAWRF via a **local observation operator** that assumes the RO retrieved refractivity is representative of a local point.
- The local operator calculates RO refractivity without considering the effects of horizontal inhomogeneity around the RO measurements, which can be significant over regions with large horizontal moisture or temperature gradients.

Nonlocal Excess Phase Operator (Sokolovskiy et al. 2005a)

Considers the atmospheric horizontal refractivity variations by integrating the GNSS RO refractivity using the ray constant step of 5 km along a straight line representing the ray path (Sokolovskiy et al. 2005b; Chen et al. 2009)

pseudo excess phase $S = \int N \, dl$; *l* is the ray path

The nonlocal operator have been implemented into the WRFDA ver. 4.0+ (Chen et al. 2009 and Zhang et al. 2014), which calculates GNSS excess phase on the mean altitude of each model layer.

Local vs. Nonlocal RO Observation Operators

Aspect	Local Operator	Nonlocal Operator	References	
Consideration of Horizontal Gradients	No	Yes		
Computational Complexity	Low	High		
Sensitivity to Moisture and Temperature Variations	Low	High		
Impact on Tropical Cyclogenesis Detection	Increased probability of detection to 40%	Increased probability of detection to 70%	Chen et al. (2020)	
Applicability to Cyclogenesis Prediction	Less accurate, delayed detection	More accurate, earlier detection		
Typhoon Track Prediction	Worse	Better	Chop ot al (2021)	
Potential Vorticity Analysis	Worse	Better capture TC dynamics		

Experimental Design

Exp.	Observation Operator	FS7/C2 RO Refractivity Data Format	RO Data QC	WRF/WRFDA Version
LOC	Local	atmPrf (high vertical resolution)	the same as CWA OP (gross error check, qc_dndz, qc_dndz2, qc_pcnt)	4.4.2
NLC	Nonlocal	NCEP PREPBUFR (low vertical resolution)	Only gross error check	4.4.2

- Continuous cycling (CC) with 5 days spin-up
- Experiment period:
 - \circ $\,$ 21 Jul 2023 00 UTC to 04 Aug 2023 12 UTC $\,$
 - 72-hr forecasts initialized at every 00 UTC and 12 UTC, total 30 forecast cases
 - Assimilated observations: The same as the operational regional NWP system in CWA

Single-Observation Tests

- Upper: The analysis increments of single refractivity data with different FS7/C2 data types and operators.
- Lower: Same as above, but for the cross section along longitude 135° E.
- The RO QC in CWA OP is stricter.

1.6 1.4 1.2 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6

The analysis increments of NLC are more elliptical.

交通部中央氣象署 Central Weather Administration

Typhoon track and intensity Verification

typhoon DOKSURI

15°N

10°N

115°E

120°E

00000

KHANUN

15-km domain

115°E 120°E 125°E 130°E 135°E

10°N

25°N

20°N

15°N

Concernant of the second

125°E 130°E 135°E

Precipitation Verification

In 3-km domain

Summary and Future Work

- FORMOSAT-7/COSMIC-2 RO observations (local refractivity) have been operationally assimilated in the CWAWRF regional NWP system since 2021.
 - It improves the synoptic forecast in geopotential height, temperature, winds and moisture distribution.
 - It also improves the typhoon track and intensity prediction.
- In this study, the nonlocal refractivity operator is investigated with the CWAWRF.
 - This is **the first time** the nonlocal operator for RO assimilation is used in CWA's operational NWP system.
 - Although the domain-wise RMSE of analysis from the nonlocal run is slightly larger than the local run, their differences in forecast (24-72 hours) are insignificant.
 - For typhoon track and intensity forecasts, the results (only for two typhoons) are mixed.
 - For the precipitation forecast, the experiment with the nonlocal operator shows higher ETS in the 0- to 36-hour forecasts, especially for the intermediate precipitation (> 10 mm/12h).
 - The **high computational demand of the nonlocal operator** makes it difficult for operational use: The computational time is ~6 times longer than the local operator.
 - Besides running more cases, **Quality Control (QC)** might also play an important role. We will evaluate the forecast performance under different QC criteria.

References

- Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo, and S. Sokolovskiy, 2009: Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. *Terr. Atmos. Ocean. Sci.*, **20**, 133–154.
- Chen, S.-Y., Y.-H. Kuo, and C.-Y. Huang, 2020: The impact of GPS RO data on the prediction of tropical cyclogenesis using a nonlocal observation operator: An initial assessment. *Mon. Weather Rev.*, **148**, 2701–2717.
- Chen, S.-Y., T.-C. Nguyen, and C.-Y. Huang, 2021: Impact of Radio Occultation Data on the Prediction of Typhoon Haishen (2020) with WRFDA Hybrid Assimilation. *Atmosphere*, **12**, 1397.
- Chen, Y.-J., J.-S. Hong and W.-J. Chen, 2022: Impact of Assimilating FORMOSAT-7/COSMIC-2 Radio Occultation Data on Typhoon Prediction Using a Regional Model. *Atmosphere*, **13**, 1879.
- Lewis, H., 2008: Refractivity calculations in ROPP. GRAS SAF Rep. 05, 8 pp.,

http://www.romsaf.org/general-documents/gsr/gsr_05.pdf.

- Sokolovskiy, S., Y.-H. Kuo, and W. Wang, 2005a: Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model. *Mon. Wea. Rev.*, **133**, 2200–2212.
- Zhang, X., Y.-H. Kuo, S. -Y. Chen, X.-Y. Huang, and L. -F. Hsiao, 2014: Parallelization strategies for the GPS radio occultation data assimilation with a nonlocal operator in the weather research and forecasting model. *J. Atmos. Oceanic Technol.*, **31**, 2008-2014.