Impact of TRITON R-windspeed assimilation on severe weather prediction and recent investigation of GNSS RO/R observations in deep troposphere

Shu-Chih Yang^{1,2}, Kuan-Jen Lin^{1,2}, Cheng-Chieh Kao², Wen-hao Yeh³, Gia-Huan Pham², Shu-Ya Chen¹ and Cheng-Yun Huang³

¹ GPS-Science Application and Research Center, National Central University ² Dept. of Atmospheric Sciences, National Central University ³ Taiwan Space Agency

COSMIC/JSDA workshop, IROWG-10, 12-18 September, NCAR

Difference between ERA5 and FNL analyses

Data period (May and June 2024)

- Large differences in the front area and northern part of the South China Sea
- Ocean surface wind is critical for moisture transport and rainfall location.

TRITON mission (launched in Oct. 2023)

Triton provides Earth surface reflected signals from GNSS satellites for remote sensing applications <u>(GNSS-R)</u>.

Areas of observation: Pacific, Atlantic, and Indian oceans

Current status of TRITON data

Data Cal/Val

RMSE=2.7 m/s

2024/05/31 Wind speed (<20m/s) is released 7000-8000 data

per day

data	note
Auxiliary data	Associated parameters for retrieval
DDM	Original and calibrated
Ocean wind speed	<20 m/s \pm 3 m/s
Ocean surface roughness	Mean Square Slope, MSS

Products

Significant Height, Hs

דדודסא Data Release

https://tacc.cwa.gov.tw/v2/en/triton_download.html

Incorporating the R-Wind data with radar data for convective-scale data assimilation

Data assimilation and experiments

- WRF V4.0 (27-9-3km)
- WRF-LETKF convective-scale ensemble data assimilation system
- 3-h DA period with a 15-min rapid-update
- Observation
 - Radial velocity and reflectivity of four radar (12-km localization)
 - Ocean surface wind speed from TRITON (150-km localization)

Experiments: Radar: Radar Vr+Zh RW: Radar + Triton WS (at 1315) RW-thin: Radar + Triton thinning (assimilate 25% data at 1300,1315,1330,1345)

Triton wind speed is consistent with the ERA reanalysis!

TRITON, CYGNSS and ASCAT on 23 April

Observation Time Windspeed 28°N 28°N F 26°N 26°N 24°N 24°N 22°N 22°N 20°N 20°N 18°N 18°N 16°N 16°N 122.5°E 117.5°E 112.5°E 117.5°E 127.5°E 112.5°E 122.5°E 127.5°E 20 12 15 18 21 8 12 16 q

Analysis Correction

Low-level windspeed (6/24 2100 LST)

ERA5 Radar **Radar + TRITON** 26°N 26°N 26°N 25°N 25°N 25°N 16 24°N 24°N 24°N 14 23°N 23°N 23°N 12 22°N 22°N 22°N 21°N 21°N 21°N 10 - 00 119°E 121°E 123°E 119°E 121°E 123°E 119°E 121°E 123°E 9 26°N 26°N 26°N 25°N 25°N 25°N 4 24°N 24°N 24°N N 23°N 23°N 23°N 0 22°N 22°N 22°N 21°N 21°N 21°N 119°E 121°E 123°E 121°E 123°E 119°E 121°E 123°E 119°E

1000hPa

925hPa

Forecast initialized at 1400 UTC

Cross-section of wind speed (color) and vertical motion (contour)

Forecast initialized at 1600 UTC

R-Wind can compensate for the near-surface limitation of radar observations and improve rainfall prediction!

FS8 and FS9 Schedule

2024	2025	2026	2027	2028	2029	2030			
FORMOSAT-8				Γ					
						ESSE			
FS	δA	FS8B	FSOL	FS8D	FSØE	ГЗОГ			
FORMOSAT-9									
			FS9A		FS9B				
SAR (FORMOSAT	C-9A)			Α		В			
Mission life		5 Years							
Mission Orbit	5 S	14±5 km Sun Synchronous	LTDN	11:30 [TBD]	~LTDN 11:30 [TBD]				
Attitude Accura	acy	Pointing Knowledge: within 0.012 deg (3axis, 3σ); Pointing Accuracy: within 0.022 deg (3axis, 3σ)							
T I X7									
Launch Year				2027		2029			
and DI			CN	CC DO/D	CN	ISS DO/D			

Impact of RO+R assimilation on rainfall prediction

Impact of RO+R assimilation on rainfall prediction

One-day Acc. Rain (05/19/2022, initialized at 05/18 12 UTC)

Vertical cross-section of moisture flux at 00 UTC 05/19

Impact on the moisture analysis

Moisture increment at 925hPa

w/ R

RO bias in the deep troposphere

Bias is defined as the mean difference between obs and ERA5 reanalysis

NN-based bias estimation

_____ atmPrf

ROPE

atmPrf_C2E1.2019.336.04.07.R11_0001.csv

(km) (km) qe Altitude SGB LNGB MSL Altitu 15 2 Classification of 0.00 0.02 0.00 0.02 0.04 rad 0.06 0.08 0.04 the bending angle atmPrf_C2E3.2019.362.13.52.R03_0001.csv atmPrf_C2E2.2020.046.12.11.R01_0001.csv atmPrf atmPri ROPP - ROPP bias (geometrical PHYB LPGB or physical) (km) Altitude MSL ISL 0.00 0.00 0.01 0.02 0.03 0.01 0.02 Dominant BAB type with all mixed boxes 0 25 LNGB Other PHYB PHYB and LNGB

atmPrf C2E1.2019.335.22.13.G17 0001.csv

atmPri

ROPP

Bias estimation of bending angle

Summary

- Preliminary result of TRITON ocean windspeed assimilation shows positive impact on the short-term precipitation prediction.
- Joint impact from RO+R assimilation has a great potential in improving the moisture transport in PBL and thus, rainfall prediction.
- Bias of bending angle in the deep troposphere can be estimated with a NN-based algorithm, considering the geometric and physical type bias.

