Proposal for a new RO BUFR template

Harald Anlauf, Josep Aparicio, Neill Bowler, Jennifer Haase, Christian Marquardt, Dominique Raspaud, Benjamin Ruston, Hui Shao, **Stig Syndergaard**

Technical advice: Jeff Ator, Simon Elliott

We need your help now

- You should have an email with the proposed changes to BUFR Section 4 (the data section)
 - Sent to IROWG mailing list
 - Sent out by Leslie to all participants
- Still some remaining questions
- We need your feedback by Friday 18th October
- Aiming for May WMO meeting to present final proposal
 - Need to prepare changes well in advance

Main changes

- Add capability for PRO and ARO
- Additional diagnostic fields
 - Easy addition of future diagnostics in new code table
- New flag table (yet to be finalized)
- Explicit descriptors for estimated errors of measurements

Changes compared to current BUFR are marked in blue in following slides

WIGOS station identifier

Data Field	Element Name	Descrip.	Table B Scale	Table B Ref. Val.	Table B Width	Units	Comments
Radio Occu	Itation header						
1–4	WIGOS station identifier	3 01 150					
1	Identifier series	0 01 125	0	0	4	Numeric	
2	Issuer of identifier	0 01 126	0	0	16	Numeric	
3	Issue number	0 01 127	0	0	16	Numeric	
4	Local identifier	0 01 128	0	0	128	Character	

Requirement for all new BUFR formats

Introducers for satellite or aircraft data

5	Short delayed replication factor	0 31 000	0	0	1	Numeric	Indicate presence of satellite RO header (<i>n</i> 0 = 0 or 1)
6–8	Satellite data introducer	New					
6	Satellite Identifier	0 01 007	0	0	10	Code Table	LEO or LEO constellation – See Table 1
7	Satellite sub-identifier	0 01 016	0	0	16	Numeric	Satellite ID in LEO constellation (missing if not applicable)
8	Satellite instrument	0 02 019	0	0	11	Code Table	e.g. 202 = GRAS - See Table 2
NO	(end delayed replication – presence of satellite RO header)						$N\bar{0} = 5+3.n0$ elements
	Delayed replication	1 01 000					Delayed replication of next descriptor
9	Short delayed replication factor	0 31 000	0	0	1	Numeric	Indicate presence of aircraft or station RO header
10–11	Aircraft or station data introducer	New					\Box
10	Station or site name	0 01 018	0	0	40	Character	
11	Upper air instrument	0 02 006	0	0	6	Code Table	
	(end delayed replication – presence of aircraft or station RO header)						,

Specify where reference time is located

Local Earth	parameters						
41	SLTA (at reference time)	New	0	-400000	19	Metres	-400 – 124km to 1m
42–43	Location (high accuracy)	3 01 021					
42	Latitude	0 05 001	5	-9000000	25	Degrees	to 10 ⁻⁵ deg (~1m) wrt WGS-84
43	Longitude	0 06 001	5	-18000000	26	Degrees	to 10 ⁻⁵ deg (~1m) wrt WGS-84
44–46	Location of point	3 04 030					(X, Y, Z) centre of curvature to
							1cm

Specify start and end of occultation

Time period	Time period of occultation										
50	Time period (between reference time and start of occultation)	0 04 026	0	-4096	13	Second	-4096 – 4096s (normally negative)				
51	Time period (between reference time and end of occultation	0 04 026	0	-4096	13	Second	-4096 – 4096s (normally positive)				

Indicates a timespan for following data

New diagnostics for whole profile

Diagnostic	quality information						
52	Signal-to-noise ratio	New	3	0	20	Numeric	Above atmosphere
53	Bending angle variance 60–80km	New	8	0	16	Radians	Relative to climatology
54	Dry pressure at 15km	New	-1	0	14	Pa	0.1 – 1100 hPa to 0.1 hPa
55	Height of top of ducting	New	0	0	13	Metres	Geometric altitude, 0 – 8km to 1m, wrt local surface

Data Field	Element Name	Descrip.	Table B Scale	Table B Ref. Val.	Table B Width	Units	Comments
56	Planetary boundary layer height	New	0	0	13	Metres	Geometric altitude, 0 – 8km to 1m, wrt local surface
57	Tropopause height	New	0	0	15	Metres	Geometric altitude, 0 – 32km t 1m, wrt Geoid (MSL)
58	L2-extrapolation height	New	0	0	15	Metres	Impact height, 0 – 32km to 1m
59	GO/WO transition height	New	0	0	15	Metres	Impact height, 0 – 32km to 1m
60	CL/OL transition height	New	0	0	15	Metres	Impact height, 0 – 32km to 1m

Are more needed?

Step 1b (bending angle) data

Add time information to occultation

 //							-
RO Step 1b	' data (see Notes 2 & 5)						
	Delayed replication	1 23 000					Delayed replication of next 23 💭 descriptors
61	Replication factor	0 31 002	0	0	16	Numeric	Number of Step 1b samples
62–63	Location (high accuracy)	3 01 021					
62	Latitude	0 05 001	5	-9000000	25	Degrees	to 10 ⁻⁵ deg (~1m) wrt WGS-84
63	Longitude	0 06 001	5	-18000000	26	Degrees	to 10 ⁻⁵ deg (~1m) wrt WGS-84
	Increase Table B scale, reference value and bit width (all at once)	2 07 003				-	Add 3 to scale, multiply reference value by 1000 and add 10 to bit width
64	Time displacement	0 04 026	(3) 0	(-4096000) -4096	(23) 13	Second	-4000 – 4000s to 1ms
	Change scale, reference value and bit width to Table B	2 07 000					
65	Bearing or azimuth	0 05 021	2	0	16	Deg. True	GNSS-to-LEO line of sight
	Delayed Replication	1 12 000				ū	Delayed replication of next 12 pdf
66	Replication factor	0 31 001	0	0	8	Numeric	Number of frequencies

PRO & accuracy changes

-							
Change Table B scale	2 02 134					Add 6 to scale	
Satellite channel centre frequency	0 02 153	(-2 <u>)</u> _8	0	26	Hz	0 – 6.7GHz, to 0.1kHz, lonosphere corrected = 0	
Signal type	New	0	0	24	Character	Three-letter code, RINEX convention	\Box
Change scale to Table B	2 02 000						
Impact Parameter	0 07 040	1	62 000 000	22	Metres	6200–6600 km to 10cm (distance from centre of curvature)	
Bending Angle	0 15 037	8	-100 000	23	Radians	-10 ⁻³ – 8x10 ⁻² rad to 10 ⁻⁸ rad	
Estimated error in bending angle	New	8	0	20	Radians	0 – 10 ⁻² rad to 10 ⁻⁸ rad	
Calibrated phase difference	New	3	-500	10	Metres	-50 – 50cm to 1mm	
Estimated error in calibrated phase difference	New	3	0	7	Metres	0 – 12cm to 1mm	
	Satellite channel centre frequency Signal type Change scale to Table B Impact Parameter Bending Angle Estimated error in bending angle Calibrated phase difference Estimated error in calibrated phase	Satellite channel centre frequency Signal type Change scale to Table B Impact Parameter Description of the scale of the	Satellite channel centre frequency Signal type New O Change scale to Table B Impact Parameter O 02 153 O 06 Change scale to Table B Impact Parameter O 07 040 Bending Angle Estimated error in bending angle Calibrated phase difference Estimated error in New S Calibrated phase New S Calibrated phase	Satellite channel centre frequency Signal type New New New New New New New N	Satellite channel centre frequency Signal type New New New New New New New N	Satellite channel centre frequency Signal type New New New New New New New N	Satellite channel centre 10 02 153 153 153 154 155 1

ARO (or station RO) section

74	Short delayed replication factor	0 31 000	0	0	1	Numeric	Indicate presence of aircraft or station RO data
75-78	Aircraft or station RO data	New					
	Increase Table B scale, reference value and bit width (all at once)	2 07 001					Add 1 to scale, multiply reference value by 10, and add 4 to bit width
75	Height (of RO antenna)	0 10 007	(1) 0	(-10 000) -1000	(21) 17	Metres	Geometric altitude, -1km to 100km, wrt Geoid (MSL)
	Change scale, reference value and bit width to Table B	2 07 000					
76	Atmospheric refractivity (in-situ at RO antenna)	0 15 036	3	0	19	N-units	0 – 500 to 10 ⁻³ N-units
77	Bending angle (partial)	0 15 037	8	-100 000	23	Radians	-10 ⁻³ – 8x10 ⁻² rad to 10 ⁻⁸ rad
78	Estimated error in bending angle (partial)	New	8	0	20	Radians	0 – 10 ⁻² rad to 10 ⁻⁸ rad
	(end delayed replication – presence of aircraft or station RO data)						

Flexible diagnostics

80	Replication factor	0 31 001	0	0	8	Numeric	Number of diagnostic entries
Data Field	Element Name	Descrip.	Table B Scale	Table B Ref. Val.	Table B Width	Units	Comments
81	Radio occultation Diagnostic type	New	0	0	5	Code Table	See Table 6
82	Decimal scale of following significands	0 08 090	0	-127	8	Numeric	Decimal scale (see next descriptor)
83	Scaled diagnostic	New	0	-131 071	18	Numeric	Scaled value (actual value = scaled value x 10 ^{decimal scale})
84	Decimal scale of following significands	0 08 090	0	-127	8	Numeric	Missing = off
	(end delayed replication – number of diagnostic entries)						

Step 2a (refractivity) data

Add geopotential height and dry temperature

	Increase Table B scale, reference value and bit width (all at once)	2 07 001							Add 1 to scale, multiply reference value by 10, and add 4 to bit width
87	Height	0 07 007	(1)	0	(-10 000) -1 000	(21)	17	metres	Geometric altitude, -1km to 100km to 10cm, wrt Geoid (MSL)
88	Geopotential height (see Note 11)	0 10 009	(1)	0	(-10 000) -1 000	(21)	17	gpm	Geopot. altitude, -1km to 100km to 10cm, wrt Geoid (MSL)
89	Atmospheric refractivity	0 15 036	(4)	3	0	(23)	19	N-units	$0 - 500$, to 10^{-4} N-units
90	Estimated error in atmospheric refractivity	New	(4)		0	(20)	16	N-units	0 – 65, to 10 ⁻⁴ N-units
91	Dry temperature	New	(2)	1	0	(16)	12	K	150 – 350K, to 0.01 K
	Change scale, reference value and bit width to Table B	2 07 000							

Flexible diagnostics

93	Replication factor	0 31 001	0	0	8	Numeric	Number of diagnostic entries
94	Radio occultation Diagnostic type	New	0	0	5	Code Table	See Table 6
95	Decimal scale of following significands	0 08 090	0	-127	8	Numeric	Decimal scale (see next descriptor)
96	Scaled diagnostic	New	1	-131 071	18	Numeric	Scaled value (actual value = scaled value x 10 ^{decimal scale})
97	Decimal scale of following significands (end delayed replication –	0 08 090	0	-127	8	Numeric	Missing = off
	number of diagnostics entries)						

Level 2b (1D-Var) data

Accuracy changes

RO 'Level2b	' data (see Notes 3–5 & 12)						Ç
	Delayed replication	1 08 000					Delayed replication of next 8 descriptors
98	Replication factor	0 31 002	0	0	16	Numeric	Number of Step 2b samples
99	Geopotential height (see Note 12)	0 07 009	0	-1 000	17	gpm	Geopot. altitude, -1km to 100km, wrt Geoid (MSL)
100	Pressure	0 10 004	-1	0	14	Pa	0.1 – 1100 hPa to 0.1 hPa
101	Temperature	0 12 001	1	0	12	K	150 – 350K to 0.1 K
102	Specific humidity	0 13 001	5	0	14	kg.kg ⁻¹	0 – 50 g.kg ⁻¹ to 0.01 g.kg ⁻¹
103	Estimated error in pressure	New	-1	0	14	Pa	0.1 – 1100 hPa to 0.1 hPa
104	Estimated error in temperature	New	1	0	12	K	150 – 350K to 0.1 K
105	Estimated error in specific humidity	New	5	0	14	Kg.kg ⁻¹	0 – 50 g.kg ⁻¹ to 0.01 g.kg ⁻¹
106	Percent confidence	0 33 007	0	0	7	%	0 = bad, 100 = good
	(end delayed replication – number of <u>step</u> 2B samples)						

Two main questions

1. Which bits in the old flag table are currently used by NWP centres?

2. Do we keep the Level 2b (1D-Var) data in the new BUFR?

We need your help now

- You should have an email with the proposed changes to BUFR Section 4 (the data section)
 - Sent to IROWG mailing list
 - Sent out by Leslie to all participants
- Still some remaining questions
- We need your feedback by Friday 18th October
- Aiming for May WMO meeting to present final proposal
 - Need to prepare changes well in advance

