Sensitivity to the RO observation operator when assimilating 35,000 radio occultations per day during ROMEX

Katrin Lonitz

katrin.lonitz@ecmwf.int

© ECMWF September 15, 2024

Background

Setup

- •Using operational model cycle of the IFS (48R1)
- •Run data assimilation experiments for Sept Nov 2022

Verification against operational analysis and observations

- •Fits to independent observations
- •Forecast scores (Std dev., RMSE, Anomaly correlation)
- •Omit first 9 days in verification statistics to avoid including spinup issues

Experiments

id	description
ctrl	Baseline (all GNSS-RO data excl. commercial and Chinese data)
ROMEX	All ROMEX data
noRO	No GNSS-RO data

Impact on short-range forecasts (12h): Change in std dev in First Guess departures (globally)

Radiosonde temperature

AMSU-A

Impact on short-range forecasts (12h): Change in std dev in First Guess departures (globally)

Wind observations

ATMS

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Decrease in Std dev for Geopotential forecast error

Increase in RMSE for Geopotential

Mean change in geopotential

mean change in temperature

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FGdep for Radiosonde Temperature

with ROMEX we seem to cool the troposphere too much.

Background

Setup

- •Using operational model cycle of the IFS (48R1)
- •Run data assimilation experiments for Sept Nov 2022

Verification against operational analysis and observations

- •Fits to independent observations
- •Forecast scores (Std dev., RMSE, Anomaly correlation)
- •Omit first 9 days in verification statistics to avoid including spinup issues

Summary

 Good forecast scores (std dev) and fits to independent observations for wind, temperature and geopotenial

Sight increase in mean error for Geopotential height (5 m), caused by cooler

Sensitivity Experiments

- small modifications of the GNSS-RO forward operator -

id	description
control	
ROMEX	
noRO	
ROMEX no 5km	Exclude GNSS-RO in lowest 5 km
ROMEX no hydro	Removing hydrostatic tail
- 7m	Take 7m off from geometric height
0.1% refrac coeff	Add 0.1% to refractivity coefficient N

Sensitivity Experiments

- small modifications of the GNSS-RO forward operator -

id	description
ROMEX no 5km	Exclude GNSS-RO in lowest 5 km
ROMEX no 5km ROMEX no hydro	Exclude GNSS-RO in lowest 5 km Removing hydrostatic tail
ROMEX no 5km ROMEX no hydro - 7m	Exclude GNSS-RO in lowest 5 km Removing hydrostatic tail Take 7m off from geometric height

mean change in temperature

ROMEX - control

mean change in temperature

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Biases in stratosphere

Forecast Error. T Zonal-mean 180W-180E. Mean for MAM 2024. Deep colours = 5% sig. (AR1)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Sensitivity Experiments

- small modifications of the GNSS-RO forward operator -

id	description
ROMEX no 5km	Exclude GNSS-RO in lowest 5 km
ROMEX no hydro	Removing hydrostatic tail
- 7m	Take 7m off from geometric height
0.1% refrac coeff	Add 0.1% to refractivity coefficient N

Source: Summary by Healy for ECMWF Seminar on the Use of Satellite Observations in NWP, 8–12 September 2014

Hydrostatic tail

Large sensitivity to the temperature at the model level directly above and below the ray tangent height

Figure 2: The temperature weighting function, $(\partial \alpha / \partial T)$, for stratospheric bending angle. The largest contributions are from the model levels directly above and below the observed tangent height. The long "hydrostatic" tail below the tangent point is caused by the sensitivity of the stratospheric model level heights to the tropospheric temperatures.

Source: Summary by Healy for ECMWF Seminar on the Use of Satellite Observations in NWP, 8–12 September 2014

Hydrostatic tail

Figure 2: The temperature weighting function, $(\partial \alpha / \partial T)$, for stratospheric bending angle. The largest contributions are from the model levels directly above and below the observed tangent height. The long "hydrostatic" tail below the tangent point is caused by the sensitivity of the stratospheric model level heights to the tropospheric temperatures.

Source: Summary by Healy for ECMWF Seminar on the Use of Satellite Observations in NWP, 8–12 September 2014

Hydrostatic tail

Large sensitivity to the temperature at the model level directly above and below the ray tangent height

Below 100hPa in this case, there is a long positive "hydrostatic tail'.

• sensitivity of the computed bending angles to the model level heights

 \rightarrow GNSS-RO measurements provide surface pressure information (Healy, 2013).

Figure 2: The temperature weighting function, $(\partial \alpha / \partial T)$, for stratospheric bending angle. The largest contributions are from the model levels directly above and below the observed tangent height. The long "hydrostatic" tail below the tangent point is caused by the sensitivity of the stratospheric model level heights to the tropospheric temperatures.

Normalised FG dep for Spire data

testing no hydrostatic tail

by obs error

mean change in temperature

mean change in temperature

0.1% refrac coeff.

 $N = k_1 P_d/T + k_2 e/T + k_3 e/T^2$ incl. compressibility

Reduced the first refractivity coefficient by 0.1% in the 2D GNSS-RO forward operator to calculate dry part of refractivity calculation (incl. TL & ADJ)

!!!REAL(KIND=JPRB), PARAMETER :: Z_AVAL = 0.77643_JPRB REAL(KIND=JPRB), PARAMETER :: Z_AVAL = 0.77565_JPRB

 $Z_NDRY = Z_AVAL*Z_PD/P_TEMP(I,J)$

Normalised FG dep for Spire data

testing 0.1% refrac coeff

by obs error

mean change in temperature

mean change in temperature

In the 2D forward operator for GNSS-RO, in the conversion from geopotential height to geometric height, we subtract 7m (gpscalc_nr2d.f90)

Height of 7m is ~0.1% scale height of refractivity, being ~7km

Normalised FG dep for Spire data

testing -7m

by obs error

mean change in temperature

normalised FG dep for Spire data

(by obs error) testing 0.1 % refrac coefficient in FO

testing substracting 7m in calculating geometric height in FO

Fit to radiosonde temperature observations

Impact on short-range forecasts (12h): Change in std dev in First Guess departures (globally)

Radiosonde temperature

AMSU-A

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Impact on short-range forecasts (12h): Change in std dev in First Guess departures (globally)

Wind observations

ATMS

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Increase in RMSE for Geopotential

Change in RMSE for Geopotential

Summary Sensitivity Studies

•ROMEX: Good impact on temperature, geopotential and wind in short-range and medium-range forecast scores in terms of std dev.

•Slight increase in mean error for Geopotential height (2-5 m), caused by cooler background

•Sensitivity studies:

- Excluding bending angles from lowest height levels doesn't change the picture
- Not allowing hydrostatic tail in FO also not the ideal solution
- Allowing small adjustments of refrac coeff. and height conversion in FO seem to the best way forward

•Open questions:

- Do we think the small mean change in geopotential/temperature error needs to be investigated further?
- Are bending angles measurements accurate enough to justify an 0.1% adjustment inside the FO?

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

normalised difference in spread [%]

38

Backup

FSOI

10-Sep-2022 to 29-Nov-2022

Change in mean error for geopotential@500hPa

From Rick Anthes collection about refractivity calculation

Table 2 Source	k ₁	k ₂	k ₃	Comments
Cucurull 2010 Exp. PREXPB	77.6890	71.2952	3.75463	Basis for NCEP GSI/GSF model system. Rueger 2002
Xuanli Li 5-12-24 GFS operational	77.6890	71.2952	3.75463	Same as NCEP
M. Murphy (5-11-24) GMAO V1	77.6890	71.2952	3.75463	Same as NCEP
Taiwan CWA	77.6890	71.2952	3.75463	Same as NCEP
ECMWF	77.643	71.2952	3.75463	Sean Healy 5-13-24

•Equation for refractivity N in terms of dry pressure P_d and water vapor pressure e:

• N = $k_1 P_d / T + k_2 e / T + k_3 e / T^2$

The values of k_1 , k_2 , and k_3 used in different forward models is shown in Table 2. Many models use this form and the coefficients in Cucurull 2010 Exp. PREXB **CECNUF** EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Change in mean error for geopotential@500hPa

Change in RMSE for Geopotential forecast error @ 500hPa

 (\cdot)

Tropics

NH

minus 7m - ctrl